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Abstract.  Nowadays on-line reconfiguration for computer networks is pursued 
as an alternative approach to keep performance levels when a mal function is 
presented in the system. In this case, reconfiguration is proposed in three stages. 
Firstly , computer network presents a degradation in time communication due to 
the appearance of certain local faults. Secondly, based upon this scenario a 
strategy for on-line reconfiguration is pursued in order to cover faults where 
new time delays appear between elements. These delays modify the behaviour 
of the dynamical response of the system. During third stage, the control law 
needs to be modified in terms of current time delays. Therefore, in this paper, 
on-line system reconfiguration as multivariable and multi-stage problem is 
pursued based upon a quasi-dynamic scheduler that takes into account those 
predetermined time delays and the related control law. Control law 
reconfiguration is pursued as soon as structural computer network 
reconfiguration is taken p lace by using current system performance. 

1. Introduction 

Nowadays, on-line reconfiguration is an open field for several applications such as 
computer network based systems and safety critical systems. The complexity of on-
line reconfiguration modifies several conditions within the application like 
communication performance and system behaviour [1]. Moreover, on-line 
reconfiguration can be reached by the use of several strategies like research 
operations [2] or scheduling algorithms [3]. In this work, the authors follow second 
strategy because it presents a feasible technique in order to keep real-time 
requirements which are necessary for safety critical systems. As mention before, 
different variables need to be measured in order to perform on-line reconfiguration for 
a safety critical system, then, a scheduling algorithm cannot reach this goal by its own 
because it does not consider system performance. It is necessary to take into account 
several measures such as, the planning analysis, the square error of the application 
response and the degradation of the system behaviour 



The scope of this work is related to safety critical systems response during on-line 
reconfiguration, where an ad-hoc procedure is presented in order to get on-line 
reconfiguration. This paper is focused into the definition of a method based upon two 
algorithms. First algorithm is the planning scheduler that is used to define which plans 
are valid during an off-line stage. This algorithm takes into account the performance 
from the related control law (second algorithm) of each plan under the related 
structural conditions. The problem is to overcome performance degradation from the 
control law when local time delays appear due to structural reconfiguration. The 
solution stated above is the goal of this work (the proposal of two algorithms). The 
goal of this paper is to present an approach for on-line reconfiguration for a safety 
critical computer network system based upon two algorithms, one for structural 
reconfiguration (scheduler) and another for system dynamics reconfiguration 
(reconfigurable control law). 
A similar strategy is presented by [4] where an interesting analysis is proposed based 
upon a trade-off between schedulability and real-time control performance. 
Alternative strategies have been pursued such as that presented by [5] where a 
complete framework is reviewed for the design and analysis of distributed real-time 
control systems. Moreover, [6] have proposed an interesting overview of how time 
delays related to communication systems are integrated to the control law. An 
alternative strategy has been presented by [7] where a foundation for optimal 
controller design is defined for multiple time delays. These delays are caused by a 
distributed communication system. The result defines a very interesting structure for 
the same scope addressed in this paper, nevertheless, it presents the constraint of a 
complete observable system where not always is possible. Moreover, time delays are 
considered constant where as in here, these are considered time variable based upon 
scheduling algorithm. This method is focused in a combination of two issues. On one 
hand, the reconfiguration of a computer network due to certain exogenous demands 
named as structural reconfiguration. On the other hand, control law reconfiguration as 
a result of the same exogenous demands named as a dynamic reconfiguration.  
This procedure, as first step, proposes a reconfiguration plan. If this is validated 
(second step) from a comparison procedure explained in a latter section, bus 
controller takes the correspondent actions to further develop structural reconfiguration 
over the computer network. At the same time, if the selected plan allows 
reconfiguration, the bus controller node sends a message to control law node in order 
to select the related control law (third step). When this last action takes place, control 
law node gets synchronized to bus controller node to perform both reconfigurations. It 
is important to define that both databases are determined during offline process. 
Therefore, two stages are needed, off-line and on-line. During off-line performance a 
scheduling algorithm tests a group of plans in order to validate some of them. 
Afterwards (but still in off-line stage), these plans are tested as separate scenarios into 
the computer network dynamical system with a predefined control law who takes into 
account the related time delays inherent to current plan. If the response is satisfactory 
both, the tested plan and the control law are saved into the respective databases. The 
scheduling algorithm used is the planning scheduler [8] for planning analysis during 
off-line performance and for scheduling construction during on-line stage. For online 
stage, the request for reconfiguration from an exogenous agent is carried out. As soon 
as this requisition is dispatched, this plan is verified within the bus controller node 



and the control law node where both (the selected plan and the related control law) are 
delivered to the system. The verification procedure is based upon a simple 
comparison of the proposed plan and the valid plan database. This database is to be 
referred as table subsequently. For on-line stage, planning scheduler is used just to 
build tasks distribution. 
In this paper, a case study has been used; this is bas ed upon a ball and beam example 
[9]. Third section gives a review of this case study.  
This computer network system has been implemented on RTLinux [10] and case 
study has been simulated in MATLAB 5.3 [11]. This paper has been divided in six 
sections. First section is current introduction. Second section is planning scheduler 
revision. Third section is the modification proposal of this last scheduling algorithm. 
Fourth section presents case study and dynamic reconfiguration. Fifth section presents 
some preliminary results. Finally, concluding remarks are presented in section sixth. 

2. Planning Scheduling Review 

This scheduler has been proposed by [8]. It is composed of several components such 
as tasks, main plan consumption time and elementary cycles. Each task is defined by 
a local consumed time (c) and local period (T). The main plan consumption time (W) 
is divided into several elementary cycles (EC) where each EC is divided into local 
time windows named as esp i. These last divisions result into a more efficient time 
managing based upon a preemptive strategy. This proposal (planning scheduler) 
divides a time window into a more complex time division to that presented by rate 
monotonic [12]. 
This planning scheduler is based upon eqns 1, 2 and 3 where U is the total 
consumption time with respect to related periods. N is the total number of tasks, X is 
the maximum wasted time between time windows EC’s.  
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In this case, time performance is  increased in comparison to Rate Monotonic due to 
re-order of useless time spaces. It presents the advantage of a possible dynamical 
modification every time window W who is defined as the time window where a very 
task is executed at least one time. This characteristic makes the system pseudo 
dynamic in terms of reconfiguration. This algorithm (planning scheduler) is enhanced 
in order to incorporate new measures such as system performance. As explained in 
first section, these measurements are taking into account during off-line performance 
in order to define a suitable control law for those valid plans. This implementation is 
further reviewed in next section.  



3.- The Proposed Method 

Having reviewed the planning scheduler, this paper proposes a modification based 
upon the increment of case study efficiency taking into account dynamic system 
performance.  
This procedure is divided in two main stages (Fig. 3.1). Firstly, the off-line stage 
(First Step) is performed by the use of several combinations of c’s (consumed time by 
local task) and T’s (Periodicity related to local task) from the total number of tasks. 
The list of combinations is conformed in a classification who is named table and it is 
conformed of a fixed number of lists that are tested by the planning scheduler in order 
to select those who are valid (Second Step). This new group is tested in case study 
simulation considering a suitable control law (Third Step). This step generates a 
smaller group of valid lists with suitable control laws. In this step, two groups are 
formed, the valid plans and the valid control laws. Both have a one to one relation. 
Both groups integrate the valid response of case study for different dynamical 
configuration scenarios. This is named as final table. 

First Step (Plan Generation)

Second Step (Planning Scheduler Evaluation)

Third Step (Testing of Valid Plans)

Final Table

Off-Line
Stage

On-Line
Stage

Fourth Step (New Plan)
Fifth Step (Plan Verification)

Non Valid
Plan Valid Plan

Distributed System
(Case Study)

Keep last
plan

Sixth Step

 

Fig. 3.1. Modified Planning Scheduler 

Second stage represents the on-line performance. Firstly, an external element 
proposes a plan candidate (Fourth Step). This is verified by a simple comparison 
against those plans presented in final table (Fifth Step).  
This comparison is  based on an inner product between current proposed plan and 
those valid plans. If the maximum resultant value from all products is bigger than a 
determined threshold, current plan is declared as valid. The related control is selected 
as well.  
If plan candidate is valid, this is distributed to every task during a particular time 
window (Sixth Step). If this plan is not valid, then, current plan is kept for next time 
window W (Sixth Step).   
During second stage if one of the valid plans is selected, then, the related control law 
is performed as well. 
It is essential to remember that reconfiguration and plan distribution takes place 
between time windows W. In this case, reconfiguration is allowed just during a fixed 
period of time. 



Initially, the modification of scheduler strategy is based upon local faults of peripheral 
elements. 

4.- Case Study 

Having explained current approach, a case study is reviewed in order to perform case 
based evaluation. This case study represents a ball and beam with different optical 
sensors and two actuators [13]. The linearised mathematical model of the ball and 
beam is next: 
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This model is separated in different modules such as peripheral elements and the 
control law strategy. Sensor and actuator dynamics are neglected for clarity purposes. 
This implementation is based upon RT-Linux module. This approach has been 
followed due to synchronization requirements. 
Having shown the main structure of this case study, modelling dynamics are taking 
into account based upon eqn. 4 where sensors and actuators are considered to be 
linear. In Fig 4.1 it is shown the actual strategy for reconfigurable control.  
In this case, the proposed method is performing on-line stage, meaning that on-line 
reconfiguration takes place based upon previous off-line stage depuration and current 
plan comparison. During this on-line stage Modified Planning Scheduler module 
takes into account an external act in order to perform reconfiguration. This external 
act is based upon local actuators and sensors behaviour in terms of local faults who 
are not studied in this work. 
This Modified Planning Scheduler module is based upon an inner product between 
current proposed plan and already defined plans (Defined within Final Table). From 
the result of this operation if one of the plans produces a result bigger than a defined 
threshold reconfiguration takes place based upon proposed plan (from external act) 
and the related control law. 

Fuzzy
Control

Law

Plant

Sensor Array

Modified Planning
Scheduler

Reference
Number
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e

Actuator

Current Nominal
Time Delay

Output

 

Fig. 4.1. Fuzzy Control Law 

Fuzzy control has been chosen rather than gain-scheduler controller and smith’s 
predictor because it has a smooth transition between scenarios. Furthermore, the 
chosen operating points are the reference elements of proposed fuzzy control. Thus, 



any degradation from time delays would degrade control law but the plant keeps a 
stable response. Time delay degradation is bounded from communication protocol as 
explained by [14].  
Current approach follows Mamdani strategy rather than Takagi Sugeno (TKS) 
proposal. Further on TKS is focused into future work pursued as the integration of 
time delays into subsequent part of fuzzy rules. 
The actual structure of this controller for fault free scenario is proposed in Fig. 4.2. 
This is based upon [15]. Membership functions are gaussian bells, where e variable 
has six membership functions (PB, PM, PS, NS, NM, NB), de has 6 membership 
functions (PB, PM, PS, NS, NM, NB). The output variable has eight membership 
functions (PB, PM, PS, PZ, NZ, NS, NM, NB). Additional variable named Current 
Nominal Time Delay (CNTD) has three membership functions  (N, Z, P). Stability 
issue is not pursued in this paper. The interested reader may consult [16]. 
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Fig. 4.2. Classical Structure for Fuzzy Control Law 

This implementation is a common approach for fuzzy control. For the case of second 
and third scenarios, Fig. 4.3 shows actual implementation. 
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Fig. 4.3. Modification for Fuzzy Control Law 

Fig. 4.3 (Fault Scenario II) shows different possibilities at the same condition. This 
case is proposed due to the possible situation that may be presented at next stage. This 



is at 100 percent time delay. For instance, condition de is NM and e is PM has a result  
NZ, PZ for fault free scenario (Fig. 4.2). However, Fig. 4.3 presents same scenario 
with four possible solutions NM, PM, NZ and PZ. This is the result of considering 
where e and de suppose to be with 100 percent delayed. In this case every new state in 
terms of fuzzy control is considered equally possible. 
Both control laws have been established firstly from try and error approach, 
afterwards, the use of a classical cluster technique such as fuzzy C-Means is used in 
order to validate both control laws [17]. The results are similar to those presented in 
Figs. 4.2 and 4.3. 
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Fig. 4.4. Scheduler for Fault Free Scenario 
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Fig. 4.5. Scheduler for Fault Scenario 

Having defined the structure of control reconfiguration, it is necessary to determine 
those time delays who are the result of system reconfiguration and inter-node 
communication. These results from each node are transmitted as part of the 
information flow of control system (sensor-control-actuator). Related to time delays, 
control node may produces either tff (time spent for fault free scenario) or tfsI (time 
spent for fault scenario I) based upon the stage of peripheral elements, furthermore, it 
gets an estimation of time spent by actuator node and its communication ( A1t̂ ). Having 
obtained these sources of time delay, control node produces a global time delay *t∆ . 



This value is composed of time spent by sensor, communication time spent between 
sensor and control, time spent by control node.  *t∆  has three different values as shown 
in eqns. 6, 8 and 10. These values depend on the current scenario. This *t∆  value is 
considered as an extra input for controller [9]. First scenario is named as fault free 
scenario. Fig. 4.4 presents a result of time performance. Total time spent during this 
scenario is 11.5 milliseconds according to table 1.a and eqn. 5. 

 
Var Name Time Consume (micro 

seconds) 
c Communication 450 
b Blocking 50 
i Interference 0 
t c Capture sensor information 100 

Ops Overhead time from pre-processing sensor information 3000 
Ods Overhead time from post -processing sensor information 3000 
t1 Communication time from sensor node to control node 575 

Opc Overhead of Pre-processing Information from control node 1000 
Odc Overhead of Process Information from control node 1000 
t ct Control Process Time 250 
t2 Communication time from control node to actuator node 575 
tA1 Processing time from actuator 1 and 2 2000 

Table 1.a Time variable from Fault Free Scenario 

 

Var 
Name Time Consume  

Ops Overhead time from pre-processing sensor information 1000 
Ods Overhead time from post -processing sensor information 1000 
t c Capture sensor information 1000 
c Communication 450 
b Blocking 50 
i Interference 0 
t1 Communication time from sensor node to decision making module 575 
t2 Communication time from sensor node to control node 575 
t s1 Processing time before sending information 2000 
t s2 Processing time before sending information 2000 

Odm Overhead of Pre-processing Information 3000 
Opm Overhead of Process Information 3000 
tdm Sending information from Decision Making to Controller 1000 

t c1= t c2 Processing time from control node 1000 
t3 Communication time from Decision making node to control node 575 
t4 Communication time from control node to actuator node 575 
tA1 Processing time from actuator 1 and 2 2000 

Table 1.b. Time variables from Fault Scenario 

 

tff= t1+ops+ods+tct + opc+odc+ t2+ 1ˆAt    (5) 

 
Where tff is the total time spent during fault free scenario. This time is a measure 
related to scheduling scheme shown in Fig. 4.5.  



Global time delay ( *t∆ ) is defined from the occurrence of an event until the 
information reaches control node. Following eqn. 5 actuator its time consumption and 
time communication are estimated from previous event. Eqn 6 shows this result. 

ffAff ttt ∆=− 1  
(6) 

Where fft  represents global time spent, 1At  represents time delay spent by actuator at 
fault free scenario and fft∆  represents time delay at fault free scenario. In nominal 
conditions fft∆  value is zero. For fault scenario I, see Fig. 4.10 (Table 1.b), the 
summation of this graph is as follows 

tfsI=tdm+ts2+ts1+ t2+t3+tc2+t4+ tc1+ 1ˆAt +t1+ tsc (7) 

This case presents another time delay result due to the appearance of an extra element 
identified as decision maker module. New communication transactions between 
sensor and control nodes appear due to this extra element. As a result of this 
interaction an extra time delay is sum as shown in eqn. 7. As soon as last time delay 
from actuator node 1ˆAt  is estimated from previous scenario. Final result is equal to 
equation 8. 

fsIAfsI ttt ∆=− 1  (8) 

This time delay represents how long control action is taken to be ready before 
actuator node acts upon the plant. In nominal conditions this value represents 20- 40% 
from worst case scenario. 
For second fault scenario shown in Fig, 4.10. A similar situation of former case is 
exposed due to appearance of extra elements. Eqn. 9 shows total time consumed in 
this scenario. 

tfsII=tdm+ts2+ts1+ t2+t3+tc2+t4+ tc1+ 1ˆAt +t1+ tsc (9) 

This third scenario is shown as 

fsIIAfsII ttt ∆=− 1  (10) 

Although tfsII and tfsI are similar in nominal terms, it is expected to be modified due to 
fault conditions. Nevertheless, the differences between scenarios are not explored in 
this paper. As result of these three scenarios three time delays are obtained. For the 
case of this simulation, CANbus standard is used to establish the communication 
between elements and clock synchronisation is time stamping over each 
communication process. The implementation of this scheduler as well as the case 
study is based upon State-Flow toolbox from [11]. 

5.- Preliminary Results 

The evaluation of the system consists of three scenarios during on-line stage. First 
scenario is a fault free scenario where the response of the plant is ideal. Second 
scenario is a fault scenario based upon the loss of  “smart” sensor output. Finally a 



catastrophic condition is presented, then the control law no longer uses the current 
sensor output.  
For these three scenarios the current input of the plant is a pulse train whose indicates 
the current position of the ball. The output of the plant represents the force applied to 
the beam. In order to switch to last two scenarios a fault is applied to one of the 
sensors. The fault is noise that modifies the output of the sensor that measures current 
position of the ball. 
Fig. 5.1 shows the response of the sensor, the plant and the controller during a fault 
free scenario. Fig. 5.2 shows the response of the system when a fault is presented at 
2000 seconds. In here, the control law is second fuzzy logic control (Fig. 4.6) where 
the input of the faulty sensor is still considered. This fault is active during 500 
seconds. 

 

Fig. 5.1. Fault Free Scenario 

 

Fig. 5.2. Fault Scenario Starting at 2000 Seconds 

As mention in third section the comparison between proposed plan and Final Table is 
performed by an inner product between them. From the result of this operation a 
vector is obtained, the maximum element from this vector is considered the winner. If 
this value is bigger than a defined threshold the proposed plan is taken into account 
for reconfiguration. The related to control law is switched as well. As depicted in Fig. 
5.3 the number of accepted plans is presented taking into those selected with no 
adequate response from structural reconfiguration. For instance, some tasks would not 
have enough time to be sampled and executed. This result is presented as the 
percentage of the adequate use of structural reconfiguration during on-line stage. In 



this case, current control law is modified according to time delays status. Case study 
produces an error due to structural and control reconfiguration. This is evaluated in 
order to declare a valid plan or not.  
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Adequate Structural
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Selected Plans with
Adequate Structural

Reconfiguration
93 % - 95 %

 

Fig. 5.3. Percentage of Selected Valid Plans for Structural Reconfiguration 

Having defined the percentage related to those adequate plans during structural 
reconfiguration, this is taking as 100 % and is evaluated in terms of control law 
performance. The results are presented in Fig. 5.4. In here, 97% of the valid plans 
have a valid response in terms of the mean square error response from the dynamic 
response of case study.  
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Reconfiguration
2% - 3%

Selected Plans with
Adequate Dynamic

Reconfiguration
97 % - 98 %

 

Fig. 5.4. Percentage of Selected Valid Plans for Control Law Reconfiguration 

As preliminary conclusion it can stated that on-line reconfiguration will not always be 
successful by just taking into account the isolate response of control law. It is 
necessary to take into account the transitions from one configuration to another. 
On-line reconfiguration is pursued during a fixed time window named W equal to 200 
ms. This is presented as a drawback, however, it does keep a safety standard in terms 
on time dependability. 

6.- Conclusions  

Present approach has shown how on-line reconfiguration can be pursued based upon 
dynamic system performance defined from time delays appearance. In order to define 
these time delays, it is necessary to determine those scenarios where reconfiguration 
would take place. This selection of suitable scenarios is an off-line stage where 
planning scheduler selects those suitable scenarios and the related control laws. 
During on-line procedure, a simple comparison between a proposed plan and the 
already selected plan allows on-line reconfiguration. The related control is dispatched 
at the same time when the selected plan is send to the rest of the elements in the 
computer network. 
Although, this approach is based upon two separate problems, it presents an ad hoc 
view of how control performance needs to be taken into account in order to develop 



on-line system reconfiguration based upon a quasi-dynamic scheduler algorithm. 
Further work is required in terms of a more precise comparison between current 
proposed plan and Final Table. In this case, two different approaches may be pursued, 
the use of Neural Networks for pattern classification and genetic algorithms for table 
optimisation. 
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