
A Proposal for On-Line Reconfiguration based upon a
Modification of Planning Scheduler and Fuzzy Logic

Control Law Response

Benítez-Pérez H.*, García-Zavala A.**, F. García-Nocetti, ***.

Departamento de Ingeniería de Sistemas Computacionales y Automatización, IIMAS,
UNAM, Apdo. Postal 20-726. Del. A.Obregón, México D.F., 01000, México.

Fax: ++52 5616 01 76, Tel: (*) ++52 5622 36 39, (***) ++52 5622 35 69
Email: (*) hector@uxdea4.iimas.unam.mx (contact author)

(**) agarciaz@yahoo.com
(***) fabian@uxdea4.iimas.unam.mx

Abstract. Nowadays on-line reconfiguration for computer networks is pursued
as an alternative approach to keep performance levels when a mal function is
presented in the system. In this case, reconfiguration is proposed in three stages.
Firstly , computer network presents a degradation in time communication due to
the appearance of certain local faults. Secondly, based upon this scenario a
strategy for on-line reconfiguration is pursued in order to cover faults where
new time delays appear between elements. These delays modify the behaviour
of the dynamical response of the system. During third stage, the control law
needs to be modified in terms of current time delays. Therefore, in this paper,
on-line system reconfiguration as multivariable and multi-stage problem is
pursued based upon a quasi-dynamic scheduler that takes into account those
predetermined time delays and the related control law. Control law
reconfiguration is pursued as soon as structural computer network
reconfiguration is taken p lace by using current system performance.

1. Introduction

Nowadays, on-line reconfiguration is an open field for several applications such as
computer network based systems and safety critical systems. The complexity of on-
line reconfiguration modifies several conditions within the application like
communication performance and system behaviour [1]. Moreover, on-line
reconfiguration can be reached by the use of several strategies like research
operations [2] or scheduling algorithms [3]. In this work, the authors follow second
strategy because it presents a feasible technique in order to keep real-time
requirements which are necessary for safety critical systems. As mention before,
different variables need to be measured in order to perform on-line reconfiguration for
a safety critical system, then, a scheduling algorithm cannot reach this goal by its own
because it does not consider system performance. It is necessary to take into account
several measures such as, the planning analysis, the square error of the application
response and the degradation of the system behaviour

The scope of this work is related to safety critical systems response during on-line
reconfiguration, where an ad-hoc procedure is presented in order to get on-line
reconfiguration. This paper is focused into the definition of a method based upon two
algorithms. First algorithm is the planning scheduler that is used to define which plans
are valid during an off-line stage. This algorithm takes into account the performance
from the related control law (second algorithm) of each plan under the related
structural conditions. The problem is to overcome performance degradation from the
control law when local time delays appear due to structural reconfiguration. The
solution stated above is the goal of this work (the proposal of two algorithms). The
goal of this paper is to present an approach for on-line reconfiguration for a safety
critical computer network system based upon two algorithms, one for structural
reconfiguration (scheduler) and another for system dynamics reconfiguration
(reconfigurable control law).
A similar strategy is presented by [4] where an interesting analysis is proposed based
upon a trade-off between schedulability and real-time control performance.
Alternative strategies have been pursued such as that presented by [5] where a
complete framework is reviewed for the design and analysis of distributed real-time
control systems. Moreover, [6] have proposed an interesting overview of how time
delays related to communication systems are integrated to the control law. An
alternative strategy has been presented by [7] where a foundation for optimal
controller design is defined for multiple time delays. These delays are caused by a
distributed communication system. The result defines a very interesting structure for
the same scope addressed in this paper, nevertheless, it presents the constraint of a
complete observable system where not always is possible. Moreover, time delays are
considered constant where as in here, these are considered time variable based upon
scheduling algorithm. This method is focused in a combination of two issues. On one
hand, the reconfiguration of a computer network due to certain exogenous demands
named as structural reconfiguration. On the other hand, control law reconfiguration as
a result of the same exogenous demands named as a dynamic reconfiguration.
This procedure, as first step, proposes a reconfiguration plan. If this is validated
(second step) from a comparison procedure explained in a latter section, bus
controller takes the correspondent actions to further develop structural reconfiguration
over the computer network. At the same time, if the selected plan allows
reconfiguration, the bus controller node sends a message to control law node in order
to select the related control law (third step). When this last action takes place, control
law node gets synchronized to bus controller node to perform both reconfigurations. It
is important to define that both databases are determined during offline process.
Therefore, two stages are needed, off-line and on-line. During off-line performance a
scheduling algorithm tests a group of plans in order to validate some of them.
Afterwards (but still in off-line stage), these plans are tested as separate scenarios into
the computer network dynamical system with a predefined control law who takes into
account the related time delays inherent to current plan. If the response is satisfactory
both, the tested plan and the control law are saved into the respective databases. The
scheduling algorithm used is the planning scheduler [8] for planning analysis during
off-line performance and for scheduling construction during on-line stage. For online
stage, the request for reconfiguration from an exogenous agent is carried out. As soon
as this requisition is dispatched, this plan is verified within the bus controller node

and the control law node where both (the selected plan and the related control law) are
delivered to the system. The verification procedure is based upon a simple
comparison of the proposed plan and the valid plan database. This database is to be
referred as table subsequently. For on-line stage, planning scheduler is used just to
build tasks distribution.
In this paper, a case study has been used; this is bas ed upon a ball and beam example
[9]. Third section gives a review of this case study.
This computer network system has been implemented on RTLinux [10] and case
study has been simulated in MATLAB 5.3 [11]. This paper has been divided in six
sections. First section is current introduction. Second section is planning scheduler
revision. Third section is the modification proposal of this last scheduling algorithm.
Fourth section presents case study and dynamic reconfiguration. Fifth section presents
some preliminary results. Finally, concluding remarks are presented in section sixth.

2. Planning Scheduling Review

This scheduler has been proposed by [8]. It is composed of several components such
as tasks, main plan consumption time and elementary cycles. Each task is defined by
a local consumed time (c) and local period (T). The main plan consumption time (W)
is divided into several elementary cycles (EC) where each EC is divided into local
time windows named as esp i. These last divisions result into a more efficient time
managing based upon a preemptive strategy. This proposal (planning scheduler)
divides a time window into a more complex time division to that presented by rate
monotonic [12].
This planning scheduler is based upon eqns 1, 2 and 3 where U is the total
consumption time with respect to related periods. N is the total number of tasks, X is
the maximum wasted time between time windows EC’s.

∑
=

=
N

i i

i

T
c

U
1

(1)

()∑
=

−−〈=
N

i

N

i

i

E
XE

N
T
c

U
1

/1 *12

(2)

() ()i
Ni

i
Ni

CXX
maxmax ...1...1 ==

≤= (3)

In this case, time performance is increased in comparison to Rate Monotonic due to
re-order of useless time spaces. It presents the advantage of a possible dynamical
modification every time window W who is defined as the time window where a very
task is executed at least one time. This characteristic makes the system pseudo
dynamic in terms of reconfiguration. This algorithm (planning scheduler) is enhanced
in order to incorporate new measures such as system performance. As explained in
first section, these measurements are taking into account during off-line performance
in order to define a suitable control law for those valid plans. This implementation is
further reviewed in next section.

3.- The Proposed Method

Having reviewed the planning scheduler, this paper proposes a modification based
upon the increment of case study efficiency taking into account dynamic system
performance.
This procedure is divided in two main stages (Fig. 3.1). Firstly, the off-line stage
(First Step) is performed by the use of several combinations of c’s (consumed time by
local task) and T’s (Periodicity related to local task) from the total number of tasks.
The list of combinations is conformed in a classification who is named table and it is
conformed of a fixed number of lists that are tested by the planning scheduler in order
to select those who are valid (Second Step). This new group is tested in case study
simulation considering a suitable control law (Third Step). This step generates a
smaller group of valid lists with suitable control laws. In this step, two groups are
formed, the valid plans and the valid control laws. Both have a one to one relation.
Both groups integrate the valid response of case study for different dynamical
configuration scenarios. This is named as final table.

First Step (Plan Generation)

Second Step (Planning Scheduler Evaluation)

Third Step (Testing of Valid Plans)

Final Table

Off-Line
Stage

On-Line
Stage

Fourth Step (New Plan)
Fifth Step (Plan Verification)

Non Valid
Plan Valid Plan

Distributed System
(Case Study)

Keep last
plan

Sixth Step

Fig. 3.1. Modified Planning Scheduler

Second stage represents the on-line performance. Firstly, an external element
proposes a plan candidate (Fourth Step). This is verified by a simple comparison
against those plans presented in final table (Fifth Step).
This comparison is based on an inner product between current proposed plan and
those valid plans. If the maximum resultant value from all products is bigger than a
determined threshold, current plan is declared as valid. The related control is selected
as well.
If plan candidate is valid, this is distributed to every task during a particular time
window (Sixth Step). If this plan is not valid, then, current plan is kept for next time
window W (Sixth Step).
During second stage if one of the valid plans is selected, then, the related control law
is performed as well.
It is essential to remember that reconfiguration and plan distribution takes place
between time windows W. In this case, reconfiguration is allowed just during a fixed
period of time.

Initially, the modification of scheduler strategy is based upon local faults of peripheral
elements.

4.- Case Study

Having explained current approach, a case study is reviewed in order to perform case
based evaluation. This case study represents a ball and beam with different optical
sensors and two actuators [13]. The linearised mathematical model of the ball and
beam is next:

21

21

21

111

032.1018.21

8258.05977.11

0016.00013.00

)()()1()()()(

−−

−−

−−

−−−−

++=

++=

++=

+−=

zzA

zzC

zzB

tezctuzBztyzA d

(4)

This model is separated in different modules such as peripheral elements and the
control law strategy. Sensor and actuator dynamics are neglected for clarity purposes.
This implementation is based upon RT-Linux module. This approach has been
followed due to synchronization requirements.
Having shown the main structure of this case study, modelling dynamics are taking
into account based upon eqn. 4 where sensors and actuators are considered to be
linear. In Fig 4.1 it is shown the actual strategy for reconfigurable control.
In this case, the proposed method is performing on-line stage, meaning that on-line
reconfiguration takes place based upon previous off-line stage depuration and current
plan comparison. During this on-line stage Modified Planning Scheduler module
takes into account an external act in order to perform reconfiguration. This external
act is based upon local actuators and sensors behaviour in terms of local faults who
are not studied in this work.
This Modified Planning Scheduler module is based upon an inner product between
current proposed plan and already defined plans (Defined within Final Table). From
the result of this operation if one of the plans produces a result bigger than a defined
threshold reconfiguration takes place based upon proposed plan (from external act)
and the related control law.

Fuzzy
Control

Law

Plant

Sensor Array

Modified Planning
Scheduler

Reference
Number

de

e

Actuator

Current Nominal
Time Delay

Output

Fig. 4.1. Fuzzy Control Law

Fuzzy control has been chosen rather than gain-scheduler controller and smith’s
predictor because it has a smooth transition between scenarios. Furthermore, the
chosen operating points are the reference elements of proposed fuzzy control. Thus,

any degradation from time delays would degrade control law but the plant keeps a
stable response. Time delay degradation is bounded from communication protocol as
explained by [14].
Current approach follows Mamdani strategy rather than Takagi Sugeno (TKS)
proposal. Further on TKS is focused into future work pursued as the integration of
time delays into subsequent part of fuzzy rules.
The actual structure of this controller for fault free scenario is proposed in Fig. 4.2.
This is based upon [15]. Membership functions are gaussian bells, where e variable
has six membership functions (PB, PM, PS, NS, NM, NB), de has 6 membership
functions (PB, PM, PS, NS, NM, NB). The output variable has eight membership
functions (PB, PM, PS, PZ, NZ, NS, NM, NB). Additional variable named Current
Nominal Time Delay (CNTD) has three membership functions (N, Z, P). Stability
issue is not pursued in this paper. The interested reader may consult [16].

PB

PM

PS

NS

NM

NB

NB NM NS PS PM PB

e

de

NM

NM NM

NMNM

NM

NB

NB

NBNMNZ

NS

NS

NS

NS

PS

PM PS

PM PM

PM PM

PM

PB

PB PB

PS

PS

PSPM

PZ
NZ

PZ
NZ

PZ
NZ

PZ
NZ

PZ
NZ

PZ
NZ

Fig. 4.2. Classical Structure for Fuzzy Control Law

This implementation is a common approach for fuzzy control. For the case of second
and third scenarios, Fig. 4.3 shows actual implementation.

PB

PM

PS

NS

NM

NB

NB NM NS PS PM PB

e

de

NM

NM

NM
NB
NS

NMNM

NM

NB

NB

NBNMNZ

NS

NS

NS

NS

PS

PM PS

PM PM

PM
PB
PS

PM

PM

PB

PB PB

PS

PS

PSPM

PZ
NZ

PZ
NZ
PM
NM

PZ
NZ

PZ
NZ
PM
NM

PZ
NZ

PZ
NZ

*

**

* **

Fig. 4.3. Modification for Fuzzy Control Law

Fig. 4.3 (Fault Scenario II) shows different possibilities at the same condition. This
case is proposed due to the possible situation that may be presented at next stage. This

is at 100 percent time delay. For instance, condition de is NM and e is PM has a result
NZ, PZ for fault free scenario (Fig. 4.2). However, Fig. 4.3 presents same scenario
with four possible solutions NM, PM, NZ and PZ. This is the result of considering
where e and de suppose to be with 100 percent delayed. In this case every new state in
terms of fuzzy control is considered equally possible.
Both control laws have been established firstly from try and error approach,
afterwards, the use of a classical cluster technique such as fuzzy C-Means is used in
order to validate both control laws [17]. The results are similar to those presented in
Figs. 4.2 and 4.3.

ti-2 ti-1 ti ti+1 ti+2 ti+3 ti+4 ti+5

tj-2 tj-1 tj tj+1 tj+2 tj+3 tj+4 tj+5

tk-3 tk-2 tk-1 tk tk+1 tk+2 tk+3 tk+4

tl-3 tl-2 tl-1 tl tl+1 tl+2 tl+3 tl+4

tj-3

tl-4

sensor array

controller

Actuator 1

Actuator 2

event

ops+ods+tc

t1

tct

opc+odc

t2

tAct1

Fig. 4.4. Scheduler for Fault Free Scenario

ti-2 ti-1 ti ti+1 ti+2 ti+3 ti+4 ti+5

tj-2 tj-1 tj tj+1 tj+2 tj+3 tj+4 tj+5

tk-3 tk-2 tk-1 tk tk+1 tk+2
tk+3 tk+4

tm-3 tm-2 tm-1 tm tm+1 tm+2 tm+3 tm+4

tl-3 tl-2 tl-1 tl tl+1 tl+2 tl+3 tl+4

tj-3

tj-3

tj-3

sensor array

Decision Making
Node

Actuator 1

Actuator 2

event

ti+6 ti+7

tj+6 tj+7

tk+5 tk+6

tl+5 tl+6

tsc=Ops+Ods +tc
ts1 ts2

t1 t2

tdm

t3 tc1 tc1 t4 t4

Control Node

tA1 tA2

Fig. 4.5. Scheduler for Fault Scenario

Having defined the structure of control reconfiguration, it is necessary to determine
those time delays who are the result of system reconfiguration and inter-node
communication. These results from each node are transmitted as part of the
information flow of control system (sensor-control-actuator). Related to time delays,
control node may produces either tff (time spent for fault free scenario) or tfsI (time
spent for fault scenario I) based upon the stage of peripheral elements, furthermore, it
gets an estimation of time spent by actuator node and its communication (A1t̂). Having
obtained these sources of time delay, control node produces a global time delay *t∆ .

This value is composed of time spent by sensor, communication time spent between
sensor and control, time spent by control node. *t∆ has three different values as shown
in eqns. 6, 8 and 10. These values depend on the current scenario. This *t∆ value is
considered as an extra input for controller [9]. First scenario is named as fault free
scenario. Fig. 4.4 presents a result of time performance. Total time spent during this
scenario is 11.5 milliseconds according to table 1.a and eqn. 5.

Var Name Time Consume (micro

seconds)
c Communication 450
b Blocking 50
i Interference 0
t c Capture sensor information 100

Ops Overhead time from pre-processing sensor information 3000
Ods Overhead time from post -processing sensor information 3000
t1 Communication time from sensor node to control node 575

Opc Overhead of Pre-processing Information from control node 1000
Odc Overhead of Process Information from control node 1000
t ct Control Process Time 250
t2 Communication time from control node to actuator node 575
tA1 Processing time from actuator 1 and 2 2000

Table 1.a Time variable from Fault Free Scenario

Var
Name Time Consume

Ops Overhead time from pre-processing sensor information 1000
Ods Overhead time from post -processing sensor information 1000
t c Capture sensor information 1000
c Communication 450
b Blocking 50
i Interference 0
t1 Communication time from sensor node to decision making module 575
t2 Communication time from sensor node to control node 575
t s1 Processing time before sending information 2000
t s2 Processing time before sending information 2000

Odm Overhead of Pre-processing Information 3000
Opm Overhead of Process Information 3000
tdm Sending information from Decision Making to Controller 1000

t c1= t c2 Processing time from control node 1000
t3 Communication time from Decision making node to control node 575
t4 Communication time from control node to actuator node 575
tA1 Processing time from actuator 1 and 2 2000

Table 1.b. Time variables from Fault Scenario

tff= t1+ops+ods+tct + opc+odc+ t2+ 1ˆAt (5)

Where tff is the total time spent during fault free scenario. This time is a measure
related to scheduling scheme shown in Fig. 4.5.

Global time delay (*t∆) is defined from the occurrence of an event until the
information reaches control node. Following eqn. 5 actuator its time consumption and
time communication are estimated from previous event. Eqn 6 shows this result.

ffAff ttt ∆=− 1
(6)

Where fft represents global time spent, 1At represents time delay spent by actuator at
fault free scenario and fft∆ represents time delay at fault free scenario. In nominal
conditions fft∆ value is zero. For fault scenario I, see Fig. 4.10 (Table 1.b), the
summation of this graph is as follows

tfsI=tdm+ts2+ts1+ t2+t3+tc2+t4+ tc1+ 1ˆAt +t1+ tsc (7)

This case presents another time delay result due to the appearance of an extra element
identified as decision maker module. New communication transactions between
sensor and control nodes appear due to this extra element. As a result of this
interaction an extra time delay is sum as shown in eqn. 7. As soon as last time delay
from actuator node 1ˆAt is estimated from previous scenario. Final result is equal to
equation 8.

fsIAfsI ttt ∆=− 1 (8)

This time delay represents how long control action is taken to be ready before
actuator node acts upon the plant. In nominal conditions this value represents 20- 40%
from worst case scenario.
For second fault scenario shown in Fig, 4.10. A similar situation of former case is
exposed due to appearance of extra elements. Eqn. 9 shows total time consumed in
this scenario.

tfsII=tdm+ts2+ts1+ t2+t3+tc2+t4+ tc1+ 1ˆAt +t1+ tsc (9)

This third scenario is shown as

fsIIAfsII ttt ∆=− 1 (10)

Although tfsII and tfsI are similar in nominal terms, it is expected to be modified due to
fault conditions. Nevertheless, the differences between scenarios are not explored in
this paper. As result of these three scenarios three time delays are obtained. For the
case of this simulation, CANbus standard is used to establish the communication
between elements and clock synchronisation is time stamping over each
communication process. The implementation of this scheduler as well as the case
study is based upon State-Flow toolbox from [11].

5.- Preliminary Results

The evaluation of the system consists of three scenarios during on-line stage. First
scenario is a fault free scenario where the response of the plant is ideal. Second
scenario is a fault scenario based upon the loss of “smart” sensor output. Finally a

catastrophic condition is presented, then the control law no longer uses the current
sensor output.
For these three scenarios the current input of the plant is a pulse train whose indicates
the current position of the ball. The output of the plant represents the force applied to
the beam. In order to switch to last two scenarios a fault is applied to one of the
sensors. The fault is noise that modifies the output of the sensor that measures current
position of the ball.
Fig. 5.1 shows the response of the sensor, the plant and the controller during a fault
free scenario. Fig. 5.2 shows the response of the system when a fault is presented at
2000 seconds. In here, the control law is second fuzzy logic control (Fig. 4.6) where
the input of the faulty sensor is still considered. This fault is active during 500
seconds.

Fig. 5.1. Fault Free Scenario

Fig. 5.2. Fault Scenario Starting at 2000 Seconds

As mention in third section the comparison between proposed plan and Final Table is
performed by an inner product between them. From the result of this operation a
vector is obtained, the maximum element from this vector is considered the winner. If
this value is bigger than a defined threshold the proposed plan is taken into account
for reconfiguration. The related to control law is switched as well. As depicted in Fig.
5.3 the number of accepted plans is presented taking into those selected with no
adequate response from structural reconfiguration. For instance, some tasks would not
have enough time to be sampled and executed. This result is presented as the
percentage of the adequate use of structural reconfiguration during on-line stage. In

this case, current control law is modified according to time delays status. Case study
produces an error due to structural and control reconfiguration. This is evaluated in
order to declare a valid plan or not.

Selected Plans with no
Adequate Structural

Reconfiguration
5% - 7%

Selected Plans with
Adequate Structural

Reconfiguration
93 % - 95 %

Fig. 5.3. Percentage of Selected Valid Plans for Structural Reconfiguration

Having defined the percentage related to those adequate plans during structural
reconfiguration, this is taking as 100 % and is evaluated in terms of control law
performance. The results are presented in Fig. 5.4. In here, 97% of the valid plans
have a valid response in terms of the mean square error response from the dynamic
response of case study.

Selected Plans with no
Adequate Dynamic

Reconfiguration
2% - 3%

Selected Plans with
Adequate Dynamic

Reconfiguration
97 % - 98 %

Fig. 5.4. Percentage of Selected Valid Plans for Control Law Reconfiguration

As preliminary conclusion it can stated that on-line reconfiguration will not always be
successful by just taking into account the isolate response of control law. It is
necessary to take into account the transitions from one configuration to another.
On-line reconfiguration is pursued during a fixed time window named W equal to 200
ms. This is presented as a drawback, however, it does keep a safety standard in terms
on time dependability.

6.- Conclusions

Present approach has shown how on-line reconfiguration can be pursued based upon
dynamic system performance defined from time delays appearance. In order to define
these time delays, it is necessary to determine those scenarios where reconfiguration
would take place. This selection of suitable scenarios is an off-line stage where
planning scheduler selects those suitable scenarios and the related control laws.
During on-line procedure, a simple comparison between a proposed plan and the
already selected plan allows on-line reconfiguration. The related control is dispatched
at the same time when the selected plan is send to the rest of the elements in the
computer network.
Although, this approach is based upon two separate problems, it presents an ad hoc
view of how control performance needs to be taken into account in order to develop

on-line system reconfiguration based upon a quasi-dynamic scheduler algorithm.
Further work is required in terms of a more precise comparison between current
proposed plan and Final Table. In this case, two different approaches may be pursued,
the use of Neural Networks for pattern classification and genetic algorithms for table
optimisation.

Acknowledgements:
The authors would like to thank the financial support of UNAM-PAPIIT (IN106100
and IN105303) Mexico in connection with this work.

References
1. Cervin A., Eker J., Bernhardsson B., Arzen, K.; “Feedback-Feedforward Scheduling of

Control Tasks”; Real-Time Systems, Kluwer Academic Publishers, Vol. 23, No. 25-53,
2002.

2. Cheng A.; “Real-Time Systems”; Wiley Interscience, USA, 2003.
3. Liu J.; “Real-Time Systems”; Ed. Prentice Hall, 2000.
4. Seto D., Lehoczky J., Sha, L., and Shin, K.; “Trade-Off Analysis of Real-Time Control

Performance and Schedulability”; Real-Time Systems, Vol. 21, pp. 199-217, 2001.
5. Törngren, M., and Redell, O.; “A Modelling Framework to support the Design and Analysis

of Distributed Real-Time Control Systems”; Microprocessors and Microsystems, vol. 24,
pp. 81-93, 2000.

6. Cervin A., Henriksson, D., Lincoln B., Eker, J., and Arzen K.; “How Does Control Timming
Affect Performance”; IEEE Control Systems Magazine, Vol. 23, No. 3, pp. 16-30, 2003.

7. Lian F. Moyne J. and Tilbury D. ; “Optimal Controller Design and Evaluation for a Class of
Networked Control Systems with Distributed Constant Delays”; American Control
Conference, pp. 3009-3014, May 2002a.

8. Almeida L., Pasadas R. and Fonseca J. A.; “Using a Planning Scheduler to Improve the
Flexibility of Real-Time Fieldbus Networks”; Control Engineering Practice, vol 7, pp. 101-
108, Pergamon,1999.

9. Benítez-Pérez H. and García -Nocetti F.; “Switching Fuzzy Logic Control for a
Reconfigurable System considering Communication Time Delays”; Proceedings, CD-
ROM, European Control Conference; ECC03, UK, September 2003b.

10. Ripoll, J.; “Tutorial of Real-Time Linux”; http://bernia.upv.es/~iripoll/rt -linux/rtlinux-
tutorial/index.html, 2001.

11. Mathworks (1998). MATLAB User’s Guide , MATLAB.
12. Liu L., and Layland L.; “Scheduling Algorithms for Multiprogramming in a Hard Real-

Time Environment” Journal of ACM., Vol. 20, pp. 46-61, 1973.
13. Benítez-Pérez, H., and García Nocetti, F.; “Reconfigurable Distributed Control using Smart

Peripheral Elements ”, Control Engineering Practice, vol. 11, No. 9, pp. 975-988, 2003a.
14. Lian F. Moyne J. and Tilbury D. ; “Network Design Consideration for Distributed Control

Systems”; IEEE Transactions on Control Systems Technology, Vol. 10, No. 2, pp. 297-307,
March 2002b.

15. Driankov, D., Hellendoorn, H., Reinfrank, M.; “ An Introduction to Fuzzy Logic Control”;
Springer-Verlag, 1994.

16. Nguyen H., Prasad N., Walker C., and Walker E.; “Fuzzy and Neural Control”; Ed. CRC,
2003.

17. Höppnner F., Klawonn F., Kruse R., and Runkler T.; “Fuzzy Cluster Analysis”; Ed. John
Wiley, 2000.

