
Introduction

Present work is the result of one particular idea around a condition established as unknown
scenario named fault scenario over system performance. In that respect control law is modified
in order to be capable to overcome this unknown scenario. In order to perform this task several
issues need to be considered such as fault diagnosis and time delays boundaries.

Several strategies have been reviewed in order to come up with the implementation and
integration of three main stages named as fault diagnosis and related heuristic confidence
value, fault tolerance strategy and the related real-time scheduling approach and those control
strategies suitable for different scenarios considering fault presence and time delays.

The objective of this work is to present to the reader a way to perform reconfigurable control
on-line without jeopardize the safety and the stability of the system. This book is focused for
undergraduate and postgraduate students interested in reconfigurable control as a strategy to
overcome local fault conditions and performance degradation during still manageable fault
situations.

This book is divided in five chapters, first chapter is a basic review of communication
networks, second chapter presents how real-time systems can define time delays, third chapter
gives a review of fault diagnosis and how to use this techniques for health treatment, fourth
chapter presents control reconfiguration strategies based upon a review of network control
systems, final chapter gives some implementing examples.

 1

CHAPTER I

NETWORK BACKGROUND

1.1.Background

During this chapter a general review of several databuses that conform the most common
strategies in terms of inter-process communication is given. This review allows the
understanding of common databus behaviour presenting how time delays are the results of
data transfer. The objective of this chapter is to show how different protocols perform
communication in order to understand communication time delays which are reviewed in
following chapters.

1.2.Review of OSI Layer

One of the key issues on distributed systems is the protocol where the integration of the
information to be transmitted through the network is conformed. There are several points to be
developed into that respect. For instance, the number of OSI layers to be involved with a direct
repercussion on user applications.

A distributed system is one in which several autonomous processors and data stores
supporting processes and/or databases interact in order to cooperate and achieve an overall
goal. The processes co-ordinate their activities and exchange information by means of
information transferred over a communication network (Sloman et al., 1987). One of the basic
characteristics of distributed systems is that interprocess messages are subject to variable
delays and failure. There is a defined time between occurrence of an event and its availability
for observation at some other point.

The simplest view of the structure of a distributed system is that it consists of a set of physical
distributed computer stations interconnected by some communications network. Each station
has the capability for processing and storing data, and may have connections to external
devices. Table 1.1 is a summary to provide an impression of the functions performed by each
layer in a typical distributed system (Sloman et al., 1987). It is important to highlight that this
is just a first attempt in order to define an overall formal concept of the OSI layer.

 2

Layer Example
Application software Monitoring and control modules
Utilities File transfer, device handlers
Local management Software process management
Kernel Multitasking, I/O drivers, memory

management
Hardware Processors, memory I/O devices
Communication system Virtual circuits, network routing, flow

control error control
Table 1.1 OSI Layer non-formal attempt

This local layered structure is the first attempt in understanding how a distributed system is
constructed. It provides a basis for describing the functions performed and services offered at
a station. The basic idea of layering is that, regardless of station boundaries, each layer adds
value to the services provided by the set of lower layers. Viewed from above, a particular layer
and the ones below it may be considered to be a ‘black box’, which implements a set of
functions in order to provide a service. A protocol is the set of rules governing communication
between the entities, which constitute a particular layer. An interface between two layers
defines the means by which one local layer makes use of services provided by the lower layer.
It defines the rules and formats for exchanging information across the boundary between
adjacent layers within a single station.

The communication system at a station is responsible for transporting system and application
messages to/from that station. It accepts messages from the station software, and prepares
them for transmission via a shared network interface. It also receives messages from the
network and prepares them for receipt by the station software.

In 1977 the International Standard Organisation (ISO) started working on a reference model
for open system interconnection. The ISO model defines the seven layers as shown in Fig 1.1.
The emphasis of the ISO work is to allow interconnection of independent mainframes rather
than distributed processing. The current version of the model only considers point-to-point
connections between two equal entities.

 3

End-user application process

File transfer, access and
management

Transfer syntax negotiation

Data communication network

Dialogue and synchronisation

End-to-end message transfer

Network routing, addressing
and clearing

Data link control

Mechanical and electrical
network definitions

Application layer

Presentation layer

Session layer

Transport layer

Network layer

Link layer

Physical layer

Distributed
Information

Network
Independent

Syntax independent
message

Physical
Connection

Fig. 1.1 OSI Layers

Application Layer
Those application entities performing local activities are not considered part of the model. A
distributed system would not make this distinction as any entity can potentially communicate
with local or remote similar entities. The application layer includes all entities, which
represent human users or devices, or perform an application function.

Presentation layer
The purpose of the presentation layer is to resolve differences in information representation
between application entities. It allows communication between application entities running on
different computers or implemented using programming languages. This layer is concerned
with data transformation, formatting, structuring, encryption and compression. Many of these
functions are application dependent and are often performed by high-level language compilers,
so the borderline between presentation and application layers is not clear.

Session layer
This layer provides the facilities to support and maintain sessions between application entities.
Sessions may extend over a long time interval involving many message interactions or be very
short involving one or two messages.

Transport layer
The transport layer is the boundary between what are considered the application-oriented
layers and the communication-oriented layer. This is the lowest layer using an end-station-to-
end-station protocol. It isolates higher layers from concerns such as how reliable and cost-
effective transfer of data is actually achieved. The transport layers usually provide
multiplexing; end-to-end error and flow control, fragmenting and reassembly of large

 4

messages into network packets and mapping of transport-layer identifiers onto network
addresses.

Network layer
The network layer isolates the higher layers from routing and switching considerations. The
network layer masks the transport layer from all the peculiarities of the actual transfer
medium: whether a point-to-point link, packet switched network, LAN or even interconnected
networks. It is the network layer’s responsibility to get a message from a source station to the
destination station across an arbitrary network topology.

Data-link layer
The task of this layer is to take the raw physical circuit and convert it into a point-to-point link
that appears relatively error free to the network layer. It usually entails error and flow control
but many local area networks have low intrinsic error rates and so do not include error
correction.

Physical layer
This layer is concerned with transmission of bits over a physical circuit. It performs all
functions associated with signalling, modulation and bit synchronisation. It may perform error
detection by signal quality monitoring.

There are several types, which are based on their applications, type of physical networks and
specific demands such fault tolerance or communication performance. The classification
pursued in this work is related to the used of communication networks. There are two main
divisions into that respect general purposes networks and industrial networks. These are
characterized for the environment to be proposed. A general description of these protocols is
listed next (Lönn, 1999):

�� Collision Sense Multiple Access/ Carrier Detect CSMA/CD – IEEE 802.3 Ethernet (IEEE,

1998)
�� Collision Sense Multiple Access/Collision Avoidance (CSMA/CA) – Controller Area

Network CAN Bosh (1991)
�� Token Passing – Token bus
�� Mini Slotting ARINC 629
�� Time Slot Allocation – Time Triggered Protocol (Kopetz, 1994), ARINC 659 (ARINC,

1993)

Two main types of data-buses are taking into account, TCP/IP and CANbus.Exist several
variations based upon CANbus like FTT-CAN or planning scheduler. Based upon OSI
computing layers protocols are defined (Tanenbaum, 2003).

Several aspects can be pursued such load balancing, scheduling analysis or synchronization.
These are reviewed in this work following the basis of real-time and non-migration, using
these basis load balancing is out the scope of this work, the interested reader may consult in
Nara et al., (2003). For clock synchronization, there are various feasible approaches like
Krishna et al., (1997) and Lönn (1999).

 5

1.3.General Overview of TCP/IP Protocol

One of the mayor examples of this type of databuses is TCP/IP. The TCP/IP family protocols
are defined to use the internet and other applications that use interconnected networks. The
protocols are layered but do not conform precisely to the ISO 7-layer model. There are several
layers used by TCP/IP as shown in Fig. 1.2.

Application

Transport

Internet

Network Interface

Underlying Network

UDP

IP

NETWORK
FRAME

Layer Message
Conformation

Fig. 1.2 TCP/IP Protocol over OSI Layer

The internet protocol layer provides two transport protocols TCP (Transport Control Protocol)
and UDP (User Datagram Protocol). TCP is a reliable connection-oriented protocol and UDP
is a datagram protocol that does not guarantee reliable transmission. The Internet Protocol
(IP) is the underlying ‘network’ protocol of the internet virtual network.

TCP/IP specifications do not specify the layers below the internet datagram layer. The success
of the TCP/IP protocols is based upon the independence of underlying transmission
technology, enabling inter-networks to be built up from many single heterogeneous networks
and data links.

1.4.Industrial Networks

It is very important in a distributed system to ensure system synchronisation. Without tight
synchronisation it is likely that the system will lose data consistency. For example, sensors
may be sampled at different times leading to failures being detected due to differences
between data values. It is also important to consider intermediate data and consistency
between replicated processing if comparison/voting is used to avoid the states of the replicas
from diverging (Brasileiro et al., 1995). Asynchronous events and processing of non-identical
messages could both lead to replica state divergence. Synchronisation at the level of processor

 6

micro-instructions is logically the most straightforward way to achieve replica synchronism. In
this approach, processors are driven by a common clock source, which guarantees that they
execute the same step at each clock pulse. Outputs are evaluated by a (possibly replicated)
hardware component at appropriate times. Asynchronous events must be distributed to the
processors of a node through special circuits which ensure that all the correct processors will
perceive such an event at the same point of their instruction flow. Since every correct
processor of a node executes the same instruction flow, all the programs that run on the non-
redundant version can be made to run, without any changes, on the node (as concurrent
execution). There are, however, a few problems with the micro-instruction level approach to
synchronisation. Firstly, as indicated before, individual processors must be built in such a way
that they will have a deterministic behaviour at each clock pulse. Therefore, they will produce
identical outputs. Secondly, the introduction of special circuits such as a reliable
comparator/voter, a reliable clock, asynchronous event handlers, and bus interfaces, increases
the complexity of the design, which in the extreme can lead to a reduction in the overall
reliability of a node. Thirdly, every new microprocessor architecture requires a considerable
re-design effort. Finally, because of their tight synchronisation, a transient fault is likely to
affect the processors in an identical manner, thus making a node susceptible to common mode
failures.

An alternative approach that tries to reduce the hardware level complexity associated with the
approaches discussed above is to maintain replica synchronism at a higher level, for instance
at the process, or task level by making use of appropriate software implemented-protocols.
Such software-implemented nodes can offer several advantages over their hardware-
implemented equivalents:

�� Technology upgrades appear to be easy; since the principles behind the protocols do
not change.

�� Employing different types of processors within a node, there is a possibility that a
measure of tolerance against design faults in processors can be obtained, without
recourse to any specialised hardware.

Fail silent nodes are implemented at the higher software fault tolerance layer. The main goal is
to detect faults inside of a number of processors (initially two) that compose a node. As soon
as one of the processors has detected a fault it has two options; either remain fail silent or
decrease its own performance. The latter option is suitable when the faulty processor is still
checking information from the other processor. This implementation involves: firstly, a
synchronisation technique called “order protocol” and secondly, a comparison procedure that
validates and transmits the information or remains silent if there is a fault. The concept used
for local fault tolerance in fail silent nodes is the basis of the approach followed in this thesis
for the “smart” elements. However, in this case, in the presence of a fault the nodes should not
remain silent.

The main advantage of fail silent nodes is the use of object oriented programming for
synchronisation protocols to allow comparison of results from both processors at the same
time. Fail silent nodes within fault tolerance are considered to be the first move towards
mobile objects (Caughey et al., 1995). Although the latter technique is not explained here, it
remains an interesting research area for fault tolerance.

 7

System model and assumptions. It is necessary to assume that the computation performed by
a process on a selected message is deterministic. This is the well-known assumption in state
machine models for which the precise requirements for supporting replicated processing are
known (Schneider, 1990). Basically, in the replicated version of a process, multiple input ports
of the non-replicated process are merged into a single port and the replica selects the message
at the head of its port queue for processing. So, if all the non-faulty replicas have identical
states then they produce identical output messages. Having provided the queues with all
correct replicas, they can be guaranteed to contain identical messages in identical order. Thus,
replication of a process requires the following two conditions to be met:

Agreement: all the non-faulty replicas of a process receive identical input messages. Order: all
the non-faulty replicas process the messages in an identical order.

Practical distributed programs often require some additional functionality such as using time-
outs when they are waiting for messages. Time-outs and other asynchronous events, such as
high priority messages, etc. are potential sources of non-determinism during input message
selection, making such programs difficult to replicate. Further on (Chapter IV), this non-
determinism is handled as an inherent characteristic of the system.

It is assumed that each processor of a fail-silent node has network interfaces for inter-node
communication over networks. In addition, the processors of a node are internally connected
by communication links for intra-node communication needed for the execution of the
redundancy management protocols. The maximum intra-node communication delay over a
link is known and bounded. If a non-faulty process of a neighbour processor sends a message,
then the message will be received within � time units. Communication channel failures will
be categorised as processor failures.

1.5.Databuses

For Aerospace application it was first necessary to consider the databus standard to be used,
on-engine for the distributed system. There are a number of standards used in aerospace. In the
following sections the most common databuses are introduced.

ARINC 429
The ARINC 429 databus is a digital broadcast databus developed by the Airlines Electronics
Engineering Committee’s (AEEC) and Systems Architecture and Interfaces (SAI). The AEEC,
which is sponsored by ARINC, released the first publication of the ARINC specification 429
in 1978.

The ARINC 429 databus (Avionics Communication, 1995) is a unidirectional type bus with
only one transmitter. Transmission contention is thus not an issue. Another factor contributing
to the simplicity of this protocol is that it was originally designed to handle “open loop” data
transmission. In this mode, there is no required response from the receiver when it accepts a
transmission from the sender. This databus uses a word length of 32 bits and two transmission

 8

rates: low speed, which is defined as being in the range of 12 to 14.5 Kbits/s consistency with
units for 1553b (Freer, 1989); and high speed which is 100 Kbits/s.

There are two modes of operation in the ARINC 429 bus protocol: character oriented mode
and bit-oriented mode. Since the ARINC 429 bus is a broadcast bus, the transmitter on the bus
uses no access protocols. Out of the 32-bit word length used, a typical usage of the bits would
be as follows:

�� Eight bits for the label
�� Two bits for the source /Destination Identifier
�� Twenty-one data bits
�� One parity bit

This databus has the advantage of simplicity, however, if the user needs more complicated
protocols or it is necessary to use a very complicated communication structure, the data
bandwidth is used rapidly. One of the characteristics used by ARINC 429 is the LRU (Logical
Remote Unit) to verify that the number of words expected match with those received. If the
number of words does not match the expected number, the receiver notifies the transmitter
within a specific amount of time.

Parity checks use one bit of the 32-bit ARINC 429 data word. Odd parity was chosen as the
accepted scheme for ARINC 429 compatible LRU’s. If a receiving LRU detects odd parity in
a data word, it continues to process that word. If the LRU detects even parity, it ignores the
data word.

ARINC 629
ARINC 629-2 (1991) has a speed of 2 MHz with two basic modes of protocol operation. One
is the Basic Protocol (BP), where transmissions may be periodic or aperiodic. Transmission
lengths are fairly constant but can vary somewhat without causing aperiodic operation if
sufficient overhead is allowed. In the Combined Protocol (CP) mode transmissions are divided
into three groups of scheduling:

�� Level 1 is periodic data (highest priority)
�� Level 2 is aperiodic data (mid-priority)
�� Level 3 is aperiodic data (lowest priority)

In level one data is sent first, followed by level two and level three. Periodic data is sent in
level one in a continuous stream until finished. Afterwards, there should be time available for
transmission of aperiodic data. The operation of transferring data from one LRU to one or
more other LRU’s occurs as follows:

�� The Terminal Controller (TC) retrieves 16-bit parallel data from the transmitting LRU’s

memory.
�� The TC determines when to transmit, attaches the data to a label, converts the parallel data

to serial data and sends it to the Serial Interface Module (SIM).

 9

�� The SIM converts the digital serial data into an analogue signal and sends them to the
current mode coupler (CMC) via the stub (twisted pair cable).

�� The CMC inductively couples the doublets onto the bus. At this point, the data is available
to all other couplers on the bus.

This protocol has three conditions, which must be satisfied for proper operation: the
occurrence of a Transmit Interval (TI), the occurrence of a Synchronisation Gap (SG), and the
occurrence of a TG (Terminal Gap). The TI defines the minimum period that a user must wait
to access the bus. It is set to the same value for all users. In the periodic mode, it defines the
update rate of every bus user. The SG is also set to the same value for all users and is defined
as a bus quiet time greater than the largest TG value. Every user is guaranteed bus access once
every TI period. The TG is a bus quiet time, which corresponds to the unique address of a bus
user. Once the number of users is known, the range of TG values can be assigned and the SG
and TI values determined. TI is given by the following table.

Binary Value (BV) BV TI (ms) TG (micro

seconds)
TI6 TI5 TI4 TI3 TI2 TI1 TI0
0 0 0 0 0 0 0 0 0.5005625 not used
0 0 0 0 0 0 1 1 1.0005625 not used
...
1 1 1 1 1 1 1 126 64.0005625 127.6875
Table 1.2 ARINC 629 time characteristics

To program the desired TG for each node, the user must follow Table 1.2 from TI6 to TI0
which represent the binary value (BV).
MIL-STD 1553b
Another commonly used databus is MIL-STD 1553b (Freer, 1989). This is a serial, time
division multiplexed databus using screened twisted-pair cable to transmit data at 1Mbit/s.
Data is transmitted in 16-bit words with a parity and a 3-bit period synchronisation signal,
with a whole word taking 20 microseconds to be transmitted. Transformer-coupled base-band
signalling with Manchester encoding is employed. Three types of devices may be attached to
the databus:

�� Bus Controller (BC)
�� Remote Terminal (RT)
�� Bus Monitor (BM)

The use of MIL-STD-1553b in military aircraft has simplified the specification of interfaces
between avionics subsystems and goes a long way towards producing off-the-shelf
interoperability. Most avionics applications of this databus require a duplicated, redundant bus
cable and bus controller to ensure continued system operation in case of a single bus or
controller failure. MIL-STD-1553b is intended primarily for systems with central intelligence
and intelligent terminals in applications where the data flow patterns are predictable.

 10

Information flow on the databus includes messages, which are formed from three types of
words (command, data and status). The maximum amount of data which may be contained in
a message is 32 data words, each word containing sixteen data bits, one parity bit and three
synchronisation bits.

The bus controller only sends command words, their content and sequence determine which of
the four possible data transfers must be undertaken:

�� Point-to-Point between controller and remote terminal

�� Point-to-Point between remote terminals

�� Broadcast from controller

�� Broadcast from a remote terminal

There are six formats for point-to-point transmissions:

�� Controller to RT data transfer

�� RT to controller data transfer

�� RT to RT data transfer

�� Mode command without a data word

�� Mode command with data transmission

�� Mode command with data word reception

and four broadcast transmission formats are specified:

�� Controller to RT data transfer

�� RT to RT(s) data transfer

�� Mode command without a data word

�� Mode command with a data word

This databus incorporates two main features for safety-critical systems, a predictable
behaviour based upon its pooling protocol and the use of bus controllers. They permit
communication handling to avoid collisions on the databus. MIL-STD-1553b also defines a
procedure for issuing a bus control transfer to the next potential bus controller which can
accept or reject control by using a bit in the returning status word.

 11

From this information it can be concluded that MIL-STD 1553b is a very flexible data bus. A
drawback, however, is that the use of a centralised bus controller reduces transmission speed
as well as reliability.

Control Area Network Databus

This sort of data-bus is based upon CANbus. This type of databus is based upon the bottom
two layers, its protocol is quite simple. This is based upon CSMA. This databus was defined
by (Lawrenz, 1997). One of the key characteristics of this databus is (Kopetz, 1997). Other
type of databus is MIL-STD1553 which is out the scope of work. This is a serial. Time
division multiplexed databus using screened twisted-pair cable to transmit data at 1Mbit/s.
Data is transmitted in 16 bit words with a parity and a 3-bit period synchronization signal,
with a whole word taking 20 microseconds to be transmitted. Transformer-coupled base-band
signaling with Manchester encoding is employed. Three types of devices may be attached to
the databus:

�� Bus Control

�� Remote Terminal

�� Bus Monitor

The use of MIL-STD- 1553b in military aircraft has simplified the specification of interfaces
between avionics subsystems and goes a long way towards producing off-the-shelf
interoperability. Most avionics applications of this databus require a duplicated, redundant bus
cable and bus controller to ensure continued system operation in case of a single bus or
controller failure. This databus is intended primarily for systems with central intelligence and
intelligent terminals in applications where the data flow patterns are predictable.

Information flow on the databus includes messages, which are formed from three types of
words (command, data and status). The maximum amount of data which may be contained in
a message is 32 data words, each word containing sixteen data bits, one parity but and three
synchronization bits. The bus controller only sends commands words, their content and
sequence determine which of the four possible data transfers must be taken:

�� Point-to-point between controller and remote terminal

�� Point-to-point between remote terminals

�� Broadcast from controller

�� Broadcast from remote terminal

There are six formats for point-to-point transmissions:

�� Controller to RT data transfer

 12

�� RT to controller data transfer

�� RT to RT data transfer

�� Mode command without a data word

�� Mode command with data transmission

�� Mode command with data word reception

This data bus incorporates two main features for safety-critical systems, a predictable
behaviour based upon its pooling protocol and the use of bus controller. These permit
communication handling to avoid collisions on the databus.

This databus has been model following several strategies such as Markov Chain and time
delays as Nilsson (1998) has proposed. CANbus protocol is based upon of the protocol
standard named Carrier Sense Multiple Access Collision Avoidance. A CAN word consists of
six field as shown in Fig. 1.3.

Arbitration Control Data Field CRC A EOF Field

7 Number of Bits6 0-64 16 211
Fig. 1.3 Dataword Configuration from CANBUS

This databus is a broadcast bus where the data source may be transmitted periodically,
sporadically or on-demand. The data source is assigned a unique identifier. The identifier
serves as priority to the message. The use of this identifier is the most important characteristic
of CAN regarding to real-time.

If a particular node needs to receive certain information then it indicates the identifier to the
interface processor. Only messages with valid identifiers are received and presented.

The identifier field of a CAN message is used to control access to the bus after collisions by
taking advantage of recessive bit strategy. For instance, if multiple stations are transmitting
concurrently and one station transmits a ‘0’ bit then all stations monitoring the bus see a ‘0’.
When silence is detected each node begins to transmit the highest priority message held on its
queue. If a node sends a recessive bit as part of the message identifier but monitors the bus and
sees a dominant bits then a collision is detected. The node determines that the message it is
transmitting it is not the highest priority in the system, stops transmitting and waits for the bus
to become idle. It is important to recall that each message in CAN bus has a unique identifier
which is based on the priority.

CAN, in fact, can resolve in a deterministic way any collision which could take place on the
shared bus. When a collision occurs and arbitration procedure is set off which immediately

 13

stops all the transmitting nodes, except for that one which is sending the message with the
highest priority (lowest numerical identifier).

One of the perceived problems of CAN is the inability to bound the response time messages.
From the observations above, the worst case time from queuing the highest priority message to
the reception of that message can be calculated easily. The longest time a node must wait for
the bus to become idle is the longest time to transmit a message. According to Tindell et al.,
(1995) the largest message (8 bytes) takes 130 microseconds to be transmitted.

The CAN specification (ISO 11898) discusses only the physical and data-link layer for a CAN
network:
�� The data link layer is the only layer that recognizes and understands the format of

messages. This layer constructs the messages to be sent to the physical layer and decodes
messages received from the physical layer. In CAN controllers, the data link layer is
implemented in hardware. Because of its complexity and in common with most other
networks this is divided into a:

o Logical link control layer which handles transmission ad reception of data

messages to and from other, higher level layers in the model.
o Media Access control layer, which encodes and serializes messages for

transmission and decodes received messages. The MAC also handles message
prioritization (arbitration), error detection and access to the physical layer.

�� The physical layer specifies the physical and electrical characteristics of the bus. This

includes the hardware that converts the characters of a message into electrical signals fro
transmitted messages and likewise the electrical signals into characters for received
messages.

1.6.Concluding Remarks

A general review of some of the most common databuses is given specially a brief description
of OSI layers and its relation to data communication through these databuses. This chapter
gives an introduction of computer networks perform communications in order to understand
the needs for real-time systems.

 14

Chapter II

Real-Time Systems

2.1 Background

Nowadays Real Time Systems become a common issue in order to model computer systems
behaviour in terms of time performance. Since the approach followed in this book is to present
how computer communication affects control law performance, to achieve this strategy, it is
necessary to understand how real time systems can be modeled and measured.

Several strategies conformed real time systems as a whole, these can be classified by two main
aspects the needs and the algorithms of real time systems. First aspect allows to understand
why real time is required over some conditions like the presence of the fault and the respective
fault tolerance issue. Other like clock synchronization is necessary to review as need for real
time systems in order to get a feasible communication performance.

On the other hand, a second aspect is related to how scheduling algorithms are focused into
several aspects having an impact on system performance. This is reviewed in terms of
consumption time and it is accomplished by time diagrams.

One of the most important issues on real time systems it is the conformation of time diagrams
in order to define system behaviour under several scenarios. This strategy visualizes how the
algorithm would perform on certain variations on time since this strategy gives the
visualization of system response another issue arises related to how valid scheduling
configuration it is, this is known as schedulability analysis.

Some other aspects such as load balancing, task precedence and synchronization are reviewed
giving an integral overview of modeling real time systems and which are the repercussions of
such an approach.

This revision of real time systems gives a strong idea of how control law is affected by these
time variations which are the results of several conditions who are beyond the scope of this
book. The important outcome of this review it is how time delays can be modeled in order to
be defined under the control law strategy.

 15

2.2 Overview

One of the main characteristics of real-time systems is the determinism (Cheng, 2002) in terms
of time consumption. This goal is achieved through several algorithms that take into account
several characteristics of tasks as well as the computer system where is going to be executed.

Real-Time systems are divided in two main approaches mono-processor and multiprocessor.
These two are defined by different characteristics, first type has a common resource the
processor and second approach has a common resource the communication link. Last common
resource can be challenged through different communication approximations. For instance, the
use of shared memory is common in high performance computing systems where the use of
databus becomes common in network systems. Last approach (multi-processor) is the
followed in this work.

There are two main sources of information worded to be review as introduction to real-time
systems one made by Kopetz (1997) and other made by Krishna et al., (1997), both have a
review of several basic concepts that are integrated in order to give a coherent overview of
real-time systems like fault tolerance strategies, the most common protocols, those most
common clock synchronization algorithms as well as some of the most useful performance
measures. From this review one of the most important needs for real time systems is fault
tolerance since its performance evaluation is modified in order to cover an abnormal situation.

Fault tolerance is a key issue, that has quite a lot implications in different fields such as the
configuration in communication and the structural strategy to accommodate failures. Most of
current strategies are based upon redundancy approach that can be implemented in three
different ways:

�� Hardware
�� Software
�� Time Redundancy

Hardware redundancy has a representation known as replication using voting algorithms
named N-Modular Redundancy (NMR). Fig. 2.1 shows the basic structure of this type of
approach. In this case several strategies can be pursued.

N-Modular Redundancy

x1

x2

xN
Fig. 2.1 N-Modular Redundancy Approach

 16

Different approaches are defined as voting algorithms in order to mask faults in a trustable
manner. These are classified in two main groups as safe and reliable algorithms. First group is
referred to those algorithms that produce a safe value when there is no consensus between
redundant measures. Alternatively, second group produce a value even in the case of no
consensus, this last approach becomes quite common when safety is not an issue. Some of the
most common voting algorithms are presented next:

�� Majority Voter
�� Weight Average Voter
�� Median Voter

As example of safe algorithms, majority voter is presented: This algorithm defines its output
as one of the elements of the largest group of inputs with the minimum difference. For
instance, consider xn inputs with a limit � in order to evaluate the difference between two
inputs d(xi,xj). A group g is conformed by those inputs whose difference is lower than the limit
�. This voter can be defined as:

�� The difference between two inputs is defined as d(xi,xj)=|xi-xj|
�� Two inputs xi and xj belong to gi if d(xi,xj)<�
�� The largest (in terms of the number of the elements) gi is the winner and one of the

elements that conform the group is the output of the voter.

As an example consider the next group of inputs {1.001, 1.0002, 1.1, 0.99, 0.98, 0.999} where
the selected limit is �=0.01. The difference between these elements is presented in Table 2.1.

Evaluated
Values

1.001 1.0002 1.1 0.99 0.98 0.999

1.001 0 0.0008 0.099 0.011 0.021 0.002
1.0002 0.0008 0 0.0998 0.0102 0.0202 0.0012
1.1 0.099 0.0998 0 0.11 0.12 0.101
0.99 0.011 0.0102 0.11 0 0.01 0.009
0.98 0.021 0.0202 0.12 0.01 0 0.019
0.999 0.002 0.0012 0.101 0.009 0.019 0
Table 2.1Basic Table for Voting algorithm example.

From this table there are three groups g1={1.001, 1.0002}, g2={0.99, 0.98, 0.999} and
g3={1,1} and the output of this voter is any of the elements of g2 since is the largest group.

Another safety algorithm is the median voter, this algorithm selects the middle value from
current group of inputs. In this case, the number of inputs has to be odd in order to select one
single input. There are various ways to define this comparison, a common approach is the
definition of differences between two input elements d(xi,xj), considering xn inputs. Where the
difference between two inputs is defined as d(xi,xj)=|xi-xj|. The maximum difference value is
discard and the two related values as well. This process is kept working until one element is
left and declared as the output of the voter.

 17

As example consider the same group presented in Table 2.1. From this group of elements,
there is one drawback due to the number of elements is even, meaning, there is going to be one
last pair of values which can be the output of the voter. In this case any of these values can be
selected. The resultant Table is shown in Table 2.2 where those highlighted values as bold are
the winners.

Evaluated
Values

1.001 1.0002 1.1 0.99 0.98 0.999

1.001 0 0.0008 0.099 0.011 0.021 0.002
1.0002 0.0008 0 0.0998 0.0102 0.0202 0.0012
1.1 0.099 0.0998 0 0.11 0.12 0.101
0.99 0.011 0.0102 0.11 0 0.01 0.009
0.98 0.021 0.0202 0.12 0.01 0 0.019
0.999 0.002 0.0012 0.101 0.009 0.019 0
Table 2.2 Results of Median Voter evaluation based upon Table 2.1.

One example of a reliable algorithm is the weighted average algorithm. This algorithm
(Lorczak, 1989) used the inputs xi from 1 to N in order to produce an output based upon eqn.
2.1. In this case there are two values involved wi and s. These two values are defined from
eqns. 2.2 and 2.3.

�
�

�
	

�
�
�

N

i
i

i
o x

s
wx

1
 (2.1)

�
�

�
N

i
iws

1
 for i,j=1… N and ji � (2.2)

� �
�
�
�

	

�
�
�

�

�
�
	

�
�
�

 �
�

�

�
�

��

N

ji
ji

ji

i

xxd
w

1,1
2

2

1

1

�

 (2.3)

Where d(xi,xj) is the difference between two inputs defined as d(xi,xj)=|xi-xj|. � value is a
constant degree related to the sensibility of weights involved in eqn. 2.1.

From this kind of algorithms one concept of interconnection merges named fully connected
system. This algorithm defines interconnection between all the involved components and a
group of similar voting algorithms in order to reduce signal dependency as shown in Fig. 2.2
as well as masking local faults. Although the price to pay is an increase of communication
time.

 18

Voting
Algorithm A

Voting
Algorithm B

Voting
Algorithm C

Sensor A

Sensor B

Sensor C

Fig. 2.2 Modular Redundancy Scheme

Alternatively, software redundancy is based upon masking software faults, which are quite
different from hardware faults. These are not a consequence of certain conditions during
operation. These are the result of design problems of the system. Redundancy becomes an
open issue because there is no a proper definition of checking points to evaluate several
software versions. In fact, the nature of the faults are defined in terms of design rather than
exogenous effects of time malfunctions.

Certain strategies have been defined like n-version programming (Krishna et al., 1997) that are
more related to how different programming teams interact in order to develop software rather
than algorithms specifically designed for fault tolerance.

Another common approach is time redundancy defined through recovery points used to rolling
back system execution when a fault is present. This corrective action takes place when a fault
is present, then the system (or these elements that are affected by the fault) rolls back to a safe
point before the failure has occurred. A similar approach is known as rolling forward strategy.
In this case if a fault occurs those evolved elements go forward up to a safe point where it is
known that the system has a fault free response.

An element that arises as result of this type of approximation is the evaluation of its
performance. This issue becomes a mature topic by itself. Different approximations have been
pursued for fault tolerance and real time. These are defined in terms of reliability, availability
and time performance.

Reliability is defined (Kopetz, 1997) as the probability of a system that will provide certain
valid response during a time window.

Availability has been defined as the probability that a system is performing correctly at an
instant time (Johnson, 1989 and Johannessen, 2004). Other performance measures are defined
in terms of time consumption and later responds.

Another important issue like fault tolerance is clock synchronization, several approaches can
be pursued, although, some can be eliminated like current time adjustment as shown in Fig.
2.3.

 19

Current Time
Value

Current Time
Value

Corrected
ClockValue Corrected

ClockValue

va

vb

va
vb

Case A Case B

t t

Fig. 2.3 Undesirable Time Correction

From both cases there is an un-desired correction. Case A at time t shows an un-correct clock
value va which is corrected instantly to vb value. This option is not valid due to abrupt forward
clock modification and potential lost of current conditions. Similar situation is presented in
case B where at time t there is an abrupt backward clock modification who is not acceptable
due to lost of current conditions from one point to another.

In order to avoid this behaviour a common algorithm based upon clock skew can be followed
using small changes between clocks. This approximation follows Fig. 2.4 where correction is
performed using skew correction.

Clock Time A

Clock Time B

tA1

tB1

tB2

tA2

t1

Straight Line of
Nominal Time

Response

tA'
1

Line 1

Line 2

Fig. 2.4 Clock Skew

In this case, time correction is performed following gradual changes according to a nominal
point in time named as (tB

2, tA
2). For instance, considering to be an observer in Line 2 at tA

1
where there is a known difference with respect to a nominal time response between t1 and tA’

1.

 20

This is corrected by the use of gradual clock modification until tA
2 is achieved following eqn.

2.4.

ATimeclock
tt
ttBTimeclock AA

AB

__*__
12

'
12
��
	

��
�

�
�

� (2.4)

In this case time correction is obtained at tA

2.

Another algorithm uses a similar principle but in a fault tolerance fashion where
communication is presented and comparison between current available clocks takes place in
each involved node. This is shown in Fig. 2.5. One disadvantage of this approach is related to
communication vulnerability where time boundary should be present as shown in Fig. 2.6. If
this boundary is lost by one of the nodes, the related clock missed its synchronization and it
has to be performed consequently as broadcast manner. The result of this procedure is a
communication overhead due time synchronization. Although it presents a reliable response
against communication faults.

Node 1
clock

Node 4
clock

Node 2
clock

Node 3
clock

Fig. 2.5 Fault Tolerance Approach for Clock Synchronization

Clock 1

Clock 2

Clock 3

Time

Time

Time
Clock 4

Time

Time
Synchronization

Fig. 2.6 Clock Synchronization with Bounded Time

Another strategy is known as bizantine clock (Krishna, 1997) which is common for
intermittent faults (Lonn, 1999). Moreover, real time systems hold several characteristics that
are compatible to other research areas like discrete control systems. To that respect real time
control fundamentals have been explored by Törngren (1998) where the basics are established
in common terms such as time delays and time variations in both areas (Table 2.3).

 21

 Discrete Control Systems Computing Systems
Activation Time Triggered Event Triggered
Time Delays Commonly defined as

Constant
Variable

Communication paradigm Periodic Communication
Strategy

Flexible Communication
Strategy based upon
Scheduling Algorithm

synchronization Common Clock
Synchronization, Sequential
Procedure

Time Stamping
Synchronization, Concurrent
Programming

Time Variation Bounded Time Variation Bounded Time Variation with
respect to Scheduling
Algorithm.

Table 2.3 Common Characteristics between Computer and Control Systems

From these basics some common time intervals are defined like communication time, jitter,
pre-processing time, events and so on. Based upon these representations a common graph is
defined and named as time graph (Fig. 2.7), where the time behaviour of those components
play a role into communication and need to be represented.

Component 1

Component 2

Component 3

Component 4

C1

C2

C3

C4

P1

P4

Where C1, C2, C3 and C4 are
the Consumption Times
Where P1 and P4 are the
Periodic Times

Fig. 2.7 Typical Time Graph

This Fig., presents the classical time graph between four components. This graph shows those
necessary time intervals to bound timing behaviour from a real-time system. One element that
plays an important role in communication is the jitter (J) that is defined as an uncertain time
delay, which is a small fraction of any known time delay. It represents the undesirable
variation of communication and computing times where it is not clear the cause of this. Fig.
2.8 shows a typical representation of the jitter between to elements during communication
time.

 22

Time

Time

C1

C2

P1

P2

tc Jc

Where tc is communication time
and Jc is the jitter involved during
communication procedure

Fig. 2.8 Jitter Presence During communication Performance

From time graph representation, real time can be measured as an adding action from certain
time intervals or events where c1 is the consumption time of task 1, c2 is the consumption time
of task 2 and p1 and p2 are the related periodic times. For instance, Fig. 2.9 it is considered as
an example, when an event occurs in component 1 and the respective flow chart follows the
relation between components 1, 2 and 3, the consumed time (ttc) from this procedure is defined
as the sum of all elements involved in a consecutive transmission as shown in eqn. 2.5.

3222111 cppctcppctctc tttttttt ������� (2.5)

Time

Time

Time

tc1

tc2

tc3

Component 1

Component 2

Component 3

Event

tct1

tct2
tpp2

tpp1

Where:
tct1 is the communication
time performed between
c1 and c2.

tct2 is the communication
time performed between
c2 and c3.

tpp1 is the pre-processing
time at node 2.

tpp2 is the pre-processing
time at node 3.

Fig. 2.9 Time Graph Describing Communication Procedure

In this case there is no presence of jitter behaviour which in real systems is uncommon.
Nevertheless, since communication is bounded through this representation uncertainties are
identified related to jitter assumption. Then, this measure becomes necessary to be known at
least through the experience of ad-hoc equipment knowledge. This graph allows issues like
complexity, mutual exclusion and up to certain extend load balancing as presented in future
sections. An example of this strategy is a fault tolerance approach with clock synchronization
as shown in Fig. 2.10.

 23

Time

Time

Time

Time

Component 1

Voting
Algorithm

Component 1

Component 1

C1 Clk1

C3

C2 Clk2

Clk3

Cvtr

At t1

t2
t4

t3

t6

t5
t8

t7

t9

t10
Fig. 2.10 Time Graph Representation of Fault Tolerance Approach

In this case communication times are t1, t2, t3, t4, t5, t6, t7, t8 and t9. Consumption times are c1,
c2 and c3. Clock measurements are clk1, clk2 and clk3. Consumption time related to voting
algorithm is cvtr. As the reader may realize these time intervals present an awkward
characteristic related to the assumption of maximum communication times like t1, t3, t5 and t10
due to a heuristic selection. This maximum final consumption time (TCT) is presented in eqn.
2.5.

Having defined every component related to time graph. These maximum communication times
are defined according to protocol and priority definitions.

vtrCT CttClktClktAtT �������� 1053321 (2.5)

This example presents two important cases like one processor sending messages to two
different processors and three processors sending messages to one processor.

From this representation it is possible to define several characteristics such as the need of
algorithms capable to define time behaviour and clock synchronization. To that respect, a class
of algorithm named scheduling algorithm becomes essential.

Real-Time system is a multidisciplinary area related to modeling the behaviour of a system, to
verify its behaviour and to analyze its performance. In order to review various strategies for
modeling a real-time system Liu (2000) and Cheng (2002) have presented a good revision of
several scheduling algorithms as well as formal representation such as deterministic finite state
machines.

Moreover, Cheng (2002) presents several formal approximations to verify if a particular
implementation to real-time systems is valid or not. In this direction, Koppenhoefer et al.,

 24

(1996) has proposed a formal verification of distributed real-time control based upon periodic
producer/consumer.

2.3 Scheduling Algorithms

The advantage of using scheduling algorithm into control systems allows to bound time delays
as well as to define formal design of their effects into dynamic systems (Arzen, et al., 1999).

Scheduling algorithms allow to allocate tasks during certain time with respect to a common
resource such as processor. These sort of algorithms are defined in terms of the common
resource identified like processors and communication media. The most well known
scheduling algorithms have been defined for first common resource where there are
characteristics to be defined like scheduler analysis. For instance, scheduler analysis for mono-
processor (the processor as common resource) approach is focused to be less than 1 where as
scheduler analysis for multiprocessor approach (the communication as common resource) can
be bigger than one according to the number of nodes to be involved.

At this section some of the most typical mono-processors algorithms are reviewed in order to
view task allocation, performing for the case of multiprocessors algorithms these are mainly
similar as their counterpart of mono-processors.

There are several algorithms that can be used such as RM (Rate Monotonic), EDF (Earliest
Deadline First), FTT (Flexible Time Triggered, Almeida et al., 2002), LST (Least Slack
Time). Where the difference between them is marked by the way tasks are ordered. It depends
on the application which way of ordering tasks is the most suitable for a particular example.
Those already mentioned algorithms are divided in two categories as static and dynamic
schedulers. The main difference is that static scheduler defines during off-line process the
allocation of task meanwhile dynamic scheduler allocates tasks based upon current conditions
considering a time slot. For instance, consider three tasks with next characteristics (Table 2.3
and Fig. 2.11) under EDF algorithm if a task changes its deadline at t� it would have a higher
priority than those tasks already defined (Table 2.4).

 Consumption Time

(C)
Periodic Time
(P)

Deadline
(D)

Priority

Task 1 (T1) C1 P1 D1 Pr2
Task 2 (T2) C2 P2 D2 Pr3
Task 3 (T3) C3 P3 D3 Pr1

Table 2.3 Tasks used to exemplified EDF Algorithm

From Table 2.3 task 3 has the smallest slack time (ts3) therefore it has the highest priority Pr1 ,
thereafter, ask 1 has next priority and last task has the lowest priority Pr3.

 25

Timet�

C1

C3

C2

P1

P3

P2

C1

C3

C2

P'1

P'3

P'2

ts1

ts3

ts2 t's2

t's1

t's3

D1

D3

D'1

D'3

D2 D'2

Fig. 2.11 Time Graph Related to Table 2.3

According to Fig., 2.11 there are two scenarios for these three tasks, firstly, task 1 has slack
time ts1, task 2 has slack time ts2 and task 3 with slack time ts3 giving the highest priority to
task 3. Second scenario presents a different priority conformation according to slack times
modifications.

 Consumption Time

(C)
Periodic Time
(P)

Deadline
(D)

Priority

Task 1 (T1) C1 P’1 D’1 Pr3
Task 2 (T2) C2 P’2 D’2 Pr1
Task 3 (T3) C3 P’3 D’3 Pr2

Table 2.4 New Priority Order after At Reorganization

For the case of deadline modification as display in Fig., 2.11 priorities are modified as shown
in Table 2.4 where task 2 has the smallest slack time (ts2) therefore it has the highest priority
Pr1, task 3 has next priority and last task has the lowest priority Pr3.

For real time purposes it is pursued to use static schedulers because its deterministic
behaviour. Recently an approach named quasi-dynamic scheduling algorithms have been
defined in order to give certain flexibility in static communication approach. An example of
this sort of algorithm is the planning scheduler (Almeida et al., 1999). The planning scheduler
is a pseudo-dynamic scheduler, in the sense that it presents some dynamic properties but is not
fully dynamic. The underlying idea is to use the present knowledge about the system (in
particular the variable set) to plan the system activity for a certain time window into the future.
Such a time window is fixed, and independent of the periods of the variables, and is called a
plan.

The scheduler must, then, be invoked once in each plan to build a static schedule that will
describe the bus allocation for the next plan. The potential benefit of the planning scheduler in
terms of run-time overhead is revealed by the following reasoning. Within a fixed time
window of duration Pi like being the period of variable i among a set of N variables, there are
at most S transactions

 26

�
�

��
	

��
�

��

�

�
�
�

�
�

N

i iP
wS

1
1 (2.6)

Where idle time is manipulated in order to give an opportunity to sporadic tasks preemptable
tasks to be expected. In order to perform task re-allocation macro-cycle of N tasks is divided
in smaller windows named elementary cycles (EC) that are divided in basic units that are
multiples of consumption times of every task. The only condition for an elementary cycle is
that it has the same period as the fastest task. Since this partition is proposed the group of tasks
conformed by N elements is re-organized according to these time restrictions taking into
account periodic time sizes in order to define priorities of execution.

If any task does not have enough time to be executed during the respective EC with enough
space for task performance. If there is one who is not able to fit in any EC it is said that this
group of tasks is not schedulable.

Some other strategies for scheduling needs can be defined in a more ad-hoc manner from the
basis of case study, for instance, some scheduling algorithms for control systems have been
defined like Hong et al., (2002) and Hong (1995) where the approach is ad-hoc to the analyzed
structure and named as bandwidth-scheduling algorithm. This algorithm proposes a timing
analysis of each node time consumption (sensor, controller and actuator) considering data
transmission time and the related time delays. Having established certain time boundaries and
timing analysis of consumption time from every considered element, a review of the proposed
algorithm is given. This algorithm consists of ordering elements such as sensors and actuators
according to their inherent loop, for instance, sensors, controllers and actuators. Thereafter,
this reordering is based upon earliest deadline first considering critique and non-critique zone
from each node.

Each scenario has a correspondent control law considering some time delays conditions like
communication time delays from sensor nodes, time consumption from several control nodes
and those considered as sporadic time delays due to non-real time messages. Therefore, each
modification established by the bandwidth scheduling algorithm has a proper repercussion into
the dynamic modeling of the system and the respective controller. In this case, time delays are
bounded and used to define control structure. This is reviewed in Chapter IV. The scheduling
algorithm allows to define time delays boundary necessary for control law performance
definition.

Alternatively, another ad-hoc scheduling algorithms have been proposed based upon fuzzy
logic (Monfared et al., 2000). In this case an study of stochastic behaviour of process system is
developed. A review of the stochastic nature from different scenarios allows the use of
adaptive scheduling approach, although, it carries the respective uncertainty. This can be
tackled by the use of a more restrictive adaptive approach, however, what is pursued by
Monfared et al., (2000) is the use of fuzzy logic based upon the utilization of several
membership functions to represents a poisson conditional probability function in order to
adapt the best component configuration in terms of the manufacturing control system
structure.

 27

Another strategies focusing into hard and soft real-time communication using CANbus have
been proposed by Livani et al., (1998) where the aim is to divide the message identifier from
every CAN word into possible variants named hard real time and soft real time respectively.
Messages get priority according to this classification. Accommodation of messages is
according to high priority messages (hard real time messages) as pursued by EDF algorithm
there are four main basic assumptions to be take into account:

�� Each Real Time message has a reserved time slot.
�� The reserved time-slot of each message is as long as the worst case transmission time of

the message.
�� The priority of a hard Real Time message depends on its transmission laxity.

An interesting approach of trade-off analysis of real-time control including scheduler analysis
is proposed by Seto et al., (2001) where a review of optimal control based upon performance
index defined as:

� �� � � � � �� �� � � � � �� � ��
�

��
� �� �

ft

ffuu
dtttutxLttxsuJ

0
,,,minmaxminmax (2.7)

Where J(u) is the performance index

S(.) and L(.) are the weight functions depending on systems states and control input.

tf is the final time over the considered interval.

u(t) are the control inputs.

x(t) are the states function which are dependant on

� � � �� �ttutxfx ,,�� (2.8)

and having as control input next function with related boundary.

� � � �� � 0, �tutxc (2.9)

This function is minimized based upon the system dynamics and schedulability performance.
As result of this optimization determination of the optimal frequencies for tasks schedule is
performed by solving this nonlinear constrained optimization problem.

For instance Gill et al., (2001) have proposed an approximation for scheduling service based
upon Real-Time CORBA middleware. This middleware strategy allows clients to invoke
operation without concern of OS/Hardware platform, types of communication protocols, types
of languages implementations, networks and buses (Vinoski, 1997). Specifically, the strategy
pursued by Gill is a scheduling service that it has already implemented the most common
scheduling algorithms from static and dynamic fashion. For instance, this service based upon a
defined framework has already implemented RM, EDF, MUF (Maximum Urgency First) and

 28

MLF (Maximum Laxity First) where an abstract implementation is followed based upon three
main goals:

�� Tasks dispatchments are organized by critical operation organized by a static priority

where non-critical operations are dispatched by a dynamic scheduling.
�� Any scheduling strategy must guarantee scheduling critical operations.
�� Adaptive scheduling approach allows flexibility to adapt varying application requirements

and platform requirements.

It also defines systems requirements by following a number of steps defined as:

1. Any application gives information used by TAO scheduling service (implemented as

object) in order to define an IDL interface.
2. Time Configuration is performed either off-line or on.line as the application demands.
3. Scheduling service assigns static and dynamic priority.
4. Priorities assigned to each task and the respective sub-division to allow dispatching

priority.
5. Schedulability is evaluated based upon priority assignment and the selected scheduling

algorithm.
6. A number of queues necessary to dispatch the already ordered priorities (per node) are

created per node.
7. Dispatching modules define thread priorities assignment according to previous analysis.

Following this idea of real time using middleware structure as resource manager, Brandt et al.,
(2002) have implemented a flexible real-time processing by developing a Dynamic Quality of
service Manager (DQM) as a mechanism to operate on the collective quality of service level
specifications. It analyzes the collective optimization of processes to determine its allocation
strategy. Once the allocation is determined it defines the level that each application should
operate in order to optimize global performance based upon soft real-time strategy where
eventual mis-deadline is feasible. This approximation to real-time using middleware presents a
competitive task allocation approach although dynamic management resource still
compromise hard real-time behaviour for safety critical purposes.

Another approach related to real-time middleware is presented by Sanz et al., (2001), where an
integrated strategy for several functional components like operational control is proposed.
Such as Complex loops, sensors and actuators monitoring, planning execution and some
others. This integration is proposed from the perspective of cooperative functional components
encapsulated through agents using real-time CORBA. Furthermore, this author has explored
the use of “intelligent” strategies for planning the behaviour of a complex network control
system as presented in Sanz et al., (2003) where design patterns are reviewed in order to
define the most suitable strategies for control law design, task allocation and exploit design
knowledge.

Furthermore, the use of middleware strategies in order to define suitable scheduling
algorithms has been explored by the use of CORBA (Sanz et al., 2001) . For instance Rate

 29

Monotonic (RM) algorithm assigns priorities to tasks based on their periods: the shorter period
the higher the priority. The rate of a task is the inverse of its period.

Rate monotonic algorithm behaves as following example in the presence of three tasks.

Example: Suppose we have three tasks with following characteristics.

Name of Tasks Consumption Time (C) Period Time (T)
T1 A aT
T2 B bT
T3 C cT

Table 2.5 Three Tasks for Rate Monotonic Example

Where T1 has the smallest period aT and the smallest consumption time a. The related ordering
of this table is presented in Fig. 2.12.

Time

aT cTbT

a cb
Fig. 2.12 Related order from Rate Monotonic Algorithm

Alternatively, in the case that we have periodic tasks with periods submultiples of bigger
periods as shown in Table 2.6 where TT ba �2 .

Name of Tasks Consumption Time (C) Period Time (T)
T1 A aT
T2 B bT
T3 C cT
T4 D dT

Table 2.6 Another Setting of task for Rate Monotonic Example

This group of tasks is organized following the basic principle of this scheduling algorithm
with next distribution (Fig. 2.13).

a1
T a4

Ta3
Ta2

T

c1
T

b1
T b2

T

T1T1 T3 T2T2 T4
T3T4

Fig. 2.13 Task Distribution from Table 2.6 According to Rate Monotonic

There are two main issues in this algorithm, firstly it has a common resource processor
performance and secondly its organization allows a priory analysis in terms of the capacity to

 30

allocate every task following their respective time restriction. This analysis is named
schedulability analysis (Liu et al., 1973) where the basic condition is that the total percentage
consumed by the consumed time (ci) from every task with respect to its period (Ti) should be
less than or equal to one. This condition is expressed as follows:

�
�

��
N

i i

i

T
cU

1
1 (2.10)

Where N is the total number of tasks and U is named as the total percentage on consumption
time. If this condition holds true, it is possible to reorganize this group of tasks as stated
before.

There are various conditions to be reviewed around this algorithm. For instance, time variation
with respect to time deadlines and consumption times where tasks can derive into this
condition. Devillers et al., (2000) present a review of these variations where feasibility
problem based on the utilization factor is possible or not.

On the other hand, The Earliest Deadline First (EDF) algorithm assigns priorities to individual
jobs in the tasks according to their absolute deadlines. Earliest Deadline First (EDF) algorithm
performs organization based upon the proximity of deadline with respect to current
consumption time left from each task. It holds the scheduling analysis as rate monotonic
algorithm. As an example Table 2.7 is presented.

Name of Tasks Consumption Time (C) Period Time (T)
T1 A aT
T2 B bT
T3 C cT

Table 2.7 Task Distribution for EDF Algorithm

Where current time evaluation is pointed as ct meaning time when is decided which task is
going to be executed following EDF considerations (Fig. 2.14).

Time

Time

Time

T1
at

T2

T3
ct

bt

aleft

cleft

bleft

ct

 31

Fig. 2.14 Task Distribution for EDF Example

At ct it is calculated the time left for task T1 with respect to its own deadline as follows:

left
Td aaa �� (2.11)

This procedure is performed for the rest of the tasks:

left
Td

left
Td

ccc

bbb

��

��
 (2.12)

Having produce ad, bd and cd a comparison between this is performed:

dd

db

cb
ba

�

� (2.13)

The smallest value from this comparison is the winner, therefore, it holds the capacity to use
the common resource (Fig. 2.15) until condition (2.13) is modified.

ba
Time

c

Fig. 2.15 Task Assignment to Common Resource According to EDF

The rest of the tasks are organized following the same criteria of deadline evaluation as shown
in Fig. 2.15. If any task modifies either its consumption time or its deadline condition (eqn.
2.13) tasks re-arrange priorities and task execution is modified according to new conditions.

Alternative approach from dynamic scheduling strategy is the LST algorithm. Least Slack
Time First (LST) algorithm at any time t, the slack of a job (ts) with deadline at d is equal to d-
t minus the time required to complete the remaining portion of the job (�t) as shown in eqn.
2.14 and Fig. 2.16.

ttdts ���� (2.14)

c
Timed

t At

Current Time

Fig. 2.16 Current Execution Task According to LST

 32

As an example of this dynamic algorithm, Table 2.8 is proposed.

Name of Tasks Consumption Time (C) Period Time (T)
T1 a aT
T2 b bT
T3 c cT

Table 2.8 Task Distribution for Related Example

Based upon Fig. 2.17 monitored system is performed by current time t as follows:

ttct
ttbt
ttat

c
T

sc

b
T

sb

a
T

sa

����

����

����

 (2.15)

a

b

c

Time

Time

Time

Current Time

aT

cT

bT

Ata

Atb

Atc

Fig. 2.17 Time Evaluation According to LST

Where tsa, tsb and tsc are the respective slack time of each task priority, in this example the task
who win the common resource is a because tsa is the smallest value then it has the biggest
priority. This algorithm has the particularity that behaves as EDF algorithm according to
certain conditions.

Another dynamic scheduling algorithm is the maximum urgency first (MUF) algorithm. This
algorithm organizes a group of task following next procedure, it follows EDF procedure
combining a heuristic priority designation of tasks when both techniques agreed to certain
priority assignment then selected task is performed.

It takes into account deadline proximity as EDF algorithm and priority assignment based upon
exogenous demands from case study. As example of this algorithm Table 2.9 is proposed.

Name of Tasks Consumption Time (C) Period Time (T)
T1 a aT

 33

T2 b bT
T3 c cT

Table 2.9 Task Distribution for MUF Algorithm Priorities

Where task organization is presented in Fig. 2.18.

a

b

c

Time

Time

Time

aT

cT

bT

Time

a cb

Fig. 2.18 Task Original Organization from Table 2.9

If we check out the result of this re-ordering (last part of Fig. 2.18) it has been performed in a
very obvious strategy since exogenous priority have won according to Table 2.9.

As concluding remark from this section, different scheduling algorithms have been presented
as well other strategies such as ad-hoc scheduling algorithms responses as well as tasks
organization viewing those key advantages and disadvantages of different algorithms. One
procedure that can be followed to define a feasible approach is presented in next section. This
review gives an idea of how scheduling approach can be followed taking into account
performance or middleware strategies.

Basically, the protocol makes use of the dual-phase elementary cycle concept in order to
combine time- and event-triggered communication with temporal isolation. Moreover, the
time-triggered traffic is scheduled online and centrally in a particular node called master. This
feature facilitates the online admission control of dynamic requests for periodic
communication because the respective requirements are held centrally in just one local table.

2.4 Distributed Real-Time Systems

Various factors should be taken into account in order to define a scheduling algorithm for
distributed systems. Issues like synchronization arise as fundamentals for this purpose other
characteristics are listed next:

�� Synchronization

�� Communication Cost

 34

�� Load Balancing

�� Task Assignment and task precedence.

Time synchronization has been reviewed in previous section defining the most common
algorithms like time stamping, passing time synchronization and sliding linear regression as
checked by Johannessen (2004). Techniques like passing-time synchronization have as main
characteristic the use of inherent protocol with time managing like network time protocol.
Cervin et al., (2003) has arise the issue of synchronization where synchronization clocks by
subnets organizations is commonly pursued although it has a high timing cost that affects
performance by inherent time delays.

From this group of possible strategies arise the issue of performance evaluation in order to
determine a suitable approach for certain cases of study, for instance, Lönn (1999) presents
review of different performance evaluation techniques as well as some results with respect to a
specific configuration such as fault tolerance average. Where this approximation presents the
best results in average skew and mean time between faults.

This strategy (Kopetz, et al., 1987) is classified as converge clock, it consists of the average of
all n-clocks except the n fastest clock and the m slowest clock. Maximum skew is presented in
eqn. 2.16.

� �
mn
mnR

3
22max �

�
��� � (2.16)

where � is the reading error of a remote clock, R is the re-synchronization interval the
maximum drift between two clocks, n and m is � from the result of this eqn. (2.16). Clocks
are corrected in terms of this error named � max.

On the other hand, communication cost is defined as the rate between the size of the data to be
transmitted and the frequency of transmission. This cost can be defined as percentage between
these two values, although it is based upon the characteristics of case study. For instance,
some distributed systems can be loosely connected, therefore, transmit with a very low
frequency but with high loaded data in terms of information such as reviewed by Coulouris et
al., (1994). Load balancing is performed when there are various processes and their respective
processors therefore accommodation is performed by several algorithms that take into account
performance measures from both, processes and processors. The load balancing algorithm is
an ad-hoc approach to case study, where the key factor is how to define performance in terms
of the analyzed variables.

There are restrictions related to computational activities where several processes can not be
executed in arbitrary order but have to take into account precedence relations defined when
design stage take place (Buttazzo, 2004). These relations are described through a-cyclic graph,
where tasks are represented by nodes and precedence relations by arrows (Fig. 2.19).

 35

T1

T7

T6

T5

T4
T3

T2

Tp
14

Tp
47

Tp
25

Tp
12

Fig. 2.19 Task Precedence Example

Where {T1, T2, …, T7} are the nodes and {TP

14, TP
12, …, TP

47} are the related precedence
tasks. Task precedence is defined by case study and it becomes a requirement for scheduling
algorithm.

There are other implementations like that proposed by Altisen et al., (2002) where a
compromise between scheduling algorithm and control synthesis paradigm is proposed

Since the scope of this work is related to distributed system the use of those pieces allow to
cover the main picture of real-time distributed systems which is to define how time delays can
be modeled up to certain conditions like consumption time defined by total time spent from a
group of tasks organized by a particular scheduler algorithm. Therefore an important issue to
arise is related to time snchronization between processors, this is performed by various means
as shown through this chapter. After this review of different algorithms the proposal of
specific strategy is defined in terms of the needs of case study as reviewed in Chapter 6.

2.5 Conclusions

As concluding remark of this chapter is the brief overview of real-time systems and various
components that take part in this review such as fault tolerance clock synchronization and
scheduling algorithms. It has been reviewed new paradigms into that respect like the use of
middleware in real time and the directions of this strategy in the near future.

 36

Chapter III

SMART PERIPHERAL ELEMENTS

3.1 Overview

The main characteristics of this sort of peripheral elements are constituted by communication
capabilities, fault diagnosis and certain degree of autonomy. This idea has been explored in
terms of smart networks (Reza, 1994).

Different research groups have explored an interesting review of this sort of configured
element. One of the key of holistic definitions of this technology has been made by Masten
(1997). What is expected from this strategy is to define autonomous elements capable to detect
faults in order to take fault tolerance actions like structural reconfiguration as previous step for
control reconfiguration. This chapter is focus in several strategies in order to enhance fault
detection and localization capabilities to peripheral elements under the prevalence of smart
elements.

3.2 Peripheral Autonomy

Peripheral autonomy is defined by the capability to produce results even in fault conditions.
Fault diagnosis is a mature defined area where several approaches to detect, isolate and
diagnosis a fault have been defined (Patton et al., 2000). For instance, knowledge based
approach using neural networks is a feasible option as presented by Chiang et al., (2001).
Other approaches like signal analysis based are feasible as has been presented by Campbell et
al., (2004) and Gertler (1998). As mention on previous chapters stability based approaches
such as robust estimation base have been studied by Mangoubi (2000) and Chen et al., (1999)
where uncertainty becomes an issue during fault presence. A complete survey of recent
develop algorithms is presented by Venkatasubramanian et al., (2003a, 2003b and 2003c)
looking at all kind of classical strategies from model based to model free techniques.

The strategy for peripheral autonomy opens a new area of work known as smart sensor
networks that assigns new challenges such as multivariate pattern recognition and cooperative
networking as presented by Agre et al., (1999), Reza (1994) and Akbaryan et al., (2001).
Studies for sensor networks have been reviewed at different perspectives such as fault
diagnosis and real time. Since the information obtained from this configuration allow the use
of data fusion, fault tolerance, structural reconfiguration, control reconfiguration and other

 37

techniques for keeping performance up to certain levels one of the most important features in
here is how to evaluate sensor network configuration and the afterward technique like those
already mentioned. For this respect, different views are reviewed from a local to global point
of views. First view is a boarded in this chapter by defining a heuristic measure named as
confidence value. Meanwhile global view is revised in chapter 4 as part of global evaluation
from the impact of peripheral autonomy into system performance.

Since peripheral autonomy is one of the main advantages from using a smart peripheral
element and certainly is the main reason for using it as central aspect from this kind of
elements on this book, it is necessary to define how to accomplish autonomy in terms of fault
detection. Following section on this chapter are focused into this goal.

3.3 Typical Smart Elements

A “smart” element is defined as a device that can communicate, self-diagnose and make
decisions (Masten, 1997). Based upon this definition a “smart” element (SE) can be visualised
as shown in Fig. 3.1. The main goal of the device is to obtain as much information as possible
in order to produce self-calibration and compensation based upon structural analysis (Blanke
et al., 2003). Additionally, this information must be processed and packaged in a standard way
to be transmitted over the communication network supported by the distributed system.

Sensor/Actuator
input output

Module
Evaluation

Transducer Transducer

Module
Behaviour

Fig. 3.1 “Smart” model

For the purpose of this work, “smart” elements consider just two kinds of peripheral devices:
sensors and actuators.

These devices play the role of independent elements for the distributed system (Fig. 3.2).
Together, with the controller they must perform their tasks within the restrictions on time
dictated by the scheduler. However, in the presence of abnormal conditions the overall system
must be robust to deal with any delay caused by either the fault or the accommodation
procedure. In this work to measure the impact in terms of time degradation of these procedures
a simulated distributed system is utilized. This is explained in chapter V.

 38

"Smart" Sensor

"Smart"Actuator

ControllerPlant
"Smart" Sensor

Fault Tolerance
Module

External
 Fault Tolerance

Module

Fig. 3.2 Network Concept

Fig. 3.2 shows different approaches to “smart” sensors combined with local fault tolerance
strategies. A “smart” sensor may rely on an external module for fault tolerance or it may have
in-built fault tolerance. Similarly, actuators may adopt either of these approaches.

Technological progress in microelectronics and digital communications has enabled the
emergence of “smart” or “intelligent” elements (devices with internal processing capability).
Conceptually, these devices can be divided into the transducer and the transmitter parts, which
are integrated in one unit. Moreover, the decentralisation of intelligence within the system and
the capability of digital communications makes it possible for “smart” elements to yield
measurements of better quality (Ferree, 1991) due to better signal processing, improved
diagnostics and control of the local hardware.

“Smart” sensors and actuators are developed to fit the specific requirements of the application.
However, consistent characteristics have been defined by Masten, (1997) for smart sensors
and actuators. This standard defines a “smart” element as a device, which has the capabilities
of self-diagnosis, communication and compensation on-line.

In particular, “Intelligent” sensors offer many advantages over their counterparts, e.g.
capability to obtain more information, produce better measurements, reduce dependency and
increase flexibility of data processing for real-time. However, standards need to be developed
to deal with the increased information available to allow sensors to be easily integrated into
systems. The adoption of the Fieldbus standard for digital communications allows the sensor
to be treated as a richer information source (Yang et al., 1997a).

Nowadays, modular design concepts are beginning to generate specifications for distributed
control. In particular, systems are appearing where low level sensor data is processed at the
sensing site and a central control manages information rather than raw data (Olbrich et al.,
1996a). In addition, process control is becoming more demanding, catalysing demands for
improved measurement accuracy, tighter control of tolerances and further increases in
automation (Olbrich et al., 1996b). The degree of automation and reliability that is likely to be

 39

required in each module will almost certainly demand high sensitivities, self-calibration and
compensation of non-linearities, low-operation, digital, pre-processed outputs, self-checking
and diagnostic modes. These features can all be built into “smart” sensors.

Likewise, low cost microelectronics allows integration of increased functionality into
distributed components such as actuators. This has led to the rise of mechatronics as an
interesting new research field. Here, electronic control is applied to mechanical systems using
microcomputers (Auslander, 1996). Using a microprocessor it is possible to program an
actuator to perform a number of additional functions resulting in a number of benefits
(Masten, 1997):

�� Automatic actuator calibration
�� Lower cost installation
�� Preventive maintenance reduction
�� On-site data collection

The high capabilities of microelectronics allow new features to be integrated together for fault
detection and isolation. “Smart” elements are becoming more widespread (Isermann, 1994).
The most common actuators transform electrical inputs into mechanical outputs such as
position, force, angle or torque. For actuators, the classification and evaluation can be
concentrated into one of three major groups:

�� Electromechanical actuators
�� Fluid power actuators
�� Alternative actuator concepts

In the future, further development of actuators (Raab and Isermann, 1990) will be determined
by the following general requirements:

�� Greater reliability and availability
�� Higher precision of positioning
�� Faster positioning without overshoot
�� Simpler and cheaper manufacturing.

Below, the different modules of the information flow of a ‘low-degree intelligent actuator’
(Isermann and Raab, 1993) are given. They comprise of these particular requirements:

�� Control at different levels
�� Self-tuning/adaptive (non-linear) control
�� Optimisation of the dynamic performance
�� Supervision and fault diagnosis
�� Knowledge base

Analytical knowledge:

�� Parameter and state estimation (actuator models)

 40

�� Controller design methods

Heuristic knowledge:

�� Normal features (storage of learned behaviour)
�� Inference mechanism
�� Decisions for (adaptive) control
�� Decisions for fault diagnosis
�� Communication

Internal: connecting of modules, messages
External: with other actuators and the automation system.

Hence, the ‘intelligent’ actuator adapts its internal controller to the non-linear behaviour
(adaptation) and stores its controller parameters dependent on the position and load (learning),
supervises all relevant elements and performs a fault diagnosis (supervision) to request for
maintenance. If a failure occurs, it can be configured to fail-safe (decisions on actions)
(Isermann and Raab, 1993).

Focusing on “smart” actuators, Koenig et al., (1997) proposed a FDI algorithm based upon the
idea of hierarchical detection observers (Janseen and Frank, 1984) to enable detection and
isolation of a large variety of faults for a system under real-time computation constraints.

An example of FDI applied to induction motors is presented by (Beilharz et al., 1997) using a
parameter estimation technique. The novelty of this approach is in the calculation of the
parameters based upon the supplied signals with different frequencies. Moreover, Lapeyre,
(1997) proposed an on-line parameter estimation based on the modified version of the
extended Kalman filter (Ljung, 1979). A similar approach for FDI is proposed by Oehler et al.,
(1997) using extended Kalman filters to make the parameter estimation possible. Furthermore,
(Benchaib et al., 1997) proposes a particular type of observer named the self-tuning sliding
mode observer (Kubota, et al., 1993) to detect faults in a specific type of induction motor.
Mediavilla et al., (1997) propose parity equations for multiplicative faults (as described by
Gertler et al., (1995)) focused on an industrial actuator benchmark designed by Blanke et al.
(1994).

3.4 Smart Elements Designs

To design a peripheral element based upon the concept of fault diagnosis it is necessary to
define the monitored element in terms of structural analysis in order to determine which kind
of faults are detectable. Since this available information is present suitable FDI strategy can be
defined in terms of available faults. Structural analysis allows system modeling in terms of
monitorability with the hand of petri nets fashion.

Firstly, fault dynamics of monitored elements are defined, secondly structural analysis is
defined as petri nets, finally FDI is pursued. Additionally, the use of neural networks or fuzzy

 41

logic can be challenged ion order to determine behaviour of system during the presence of
faults.

3.5 Fault Diagnosis Approximations

Since the basic issue in smart element design is the fault diagnosis procedure, it is necessary to
give a review of those available strategies to this respect. Fault detection and isolation is
divided in two main groups, qualitative and quantitative approximations, both contain several
algorithms presented in Table 3.1.

Qualitative Methods Quantitative Methods
Statistical Methods (PCA) Parameter Estimation
Neural Networks Unknown Input Observers
Fuzzy Logic Parity Equations
Causal Models Kalman Filters

Table 3.1 Most Common Strategies for Fault Detection and Isolation

Each algorithm present certain advantages and disadvantages to characteristics of the process
to be mentioned. In order to give a fair comparison of these algorithms a brief review of them
is performed.

3.5.1 Parameter Estimation

Parameter estimation is based upon static model identification where the basic representation
is given by

� � � � � �tuatuaty NN��� ...11 (3.1)

Where two vectors are conformed, a regression vector � � � �! "tutuU N...1� and a parameter
vector ! Naa ,...,1� "# giving next representation

� � #TUty � (3.2)

Now this output can be predicted based upon an estimation of parameter vector like follows

#̂ˆ TUy � (3.3)

Therefore the related performance index is defined as:

� � � �!�
�

����
N

i
ityityJ

0

2ˆ " (3.4)

 42

where N is the number of elements.
Using this performance index J and its derivative in order to define the optimum of value.
From this evaluation is defined as:

#̂
#̂

� � � �� � � � � �� �
�

�
�
�

�
���

�

�
�
�

�
��� ��

��

N

i

T
TN

i

T ityituituitu
00

#̂ � (3.5)

Or in other words

! " yUUU TTT�#̂ (3.6)

For the case of non linear dynamic models parameter estimation can be defined in terms of
classical models, named as moving average (MA) and autoregressive moving average
(ARMA). There are different approaches from the number of input-output variables such as
single input single output system multiple-input single-output system and multiple-input
multiple-output system. For any case two kinds of faults can be detected additive and
multiplicative. For the case of additive faults these are considered as exogenous effects into
peripheral elements such as, sensors or actuators. Mathematical representation of this effect is
given in next eqn.

� � � � � � � �� �
� � � � � �kCxkyky

kukuBkAxkx
$��

�����1
 (3.7)

where and are the related variation known as additive faults x and y are the states and
output respectively. A, B and C are well dimension and known matrices. For the case of
multiplicative faults these are presented into the monitored element, therefore, the
representative matrix would suffer modifications like the follows:

y� u�

� � � � � � � �� �
� � � �kCxky

kuBkxAAkx
�

�����1
 (3.8)

Where represents the inherent variations of the system named as multiplicative faults.
From this fault representation, these are reviewed based upon residual generation which are
categorized in two types structural and directional (Gertler, 1998). Structural residuals are
designed that each variable corresponds to a specific subset of faults as shown in Fig. 3.3,
where r1, r2 and r3 are residuals produced by any model based technique like tipically
observed based technique. Fault1, fault2 and fault3 are faults related to residual coordination
when they act over the monitored system.

A�

 43

Fault 1

Fault 2

Fau
lt 2

r1

r3

r2

Fig. 3.3 Structural Fault Decomposition

Directional Residuals are designed to response to a particular fault as shown in Fig. 3.4. In this
case, faults response to a particular behaviour of three residuals giving a resultant response
considering a direction of certain behaviour. This sort of strategy tends to be quite useful if
fault response is very well known in order to define certain replay boundaries.

r1

r3

r2

Fault 1

Fault 3

Fault 2

Fig. 3.4 Directional Fault Decomposition

3.5.2 Observer Based Techniques

Another common strategy for detection is the named state space fault detection. This is based
upon next eqn.

� � � � � �
� � � �kCxky

kBukAxkx
�

���1
 (3.9)

this procedure is based upon state observers which are used to reconstruct the un-measurable
state variables following general eqn. 3.10 are

 44

� � � � � � � �
� � � � � �kxCkyke

kHekBukxAkx
ˆ

ˆ1ˆ
��

����
 (3.10)

Where H is the gain observer matrix and e is named as error. Now the state estimation error
follows eqn. 3.11.

� � � � � �
� � ! " � �kxHCAkx

kxkxkx
~1~

ˆ~

���
��

 (3.11)

where H is gain matrix related to the state observer and x~ the state vector error. There are two
possible approaches, firstly observer can be sensitive to fault presence by proper model of H
matrix. Second, approach is complete the opposite where observer does not response to fault.
Then residual becomes necessary as monitored variable in order to detect faults.

3.5.3 Parity Equations

Other common methodology is named parity equations, this is based on a description the
model using a linear process representation through a transfer function like expressed in eqn.
3.12.

A
B

u
yHP �� (3.12)

where B and A are algebraic structures that represents the monitored element.

This process can be represented through a similar structure named process model

m

m

m

m
m A

B
u
yH �� (3.13)

now if a fu is a fault added to the input and fy is a fault added at the output, the process can be
represented as follows.

yuPP ffHuHy ��� (3.14)

where the related error is given by:

yupm ffHyye ���� (3.15)

Following typical configuration shown in Fig. 3.5

 45

Hp

fyfu

u y

Bm Am
e

Fig. 3.5 Basic Configuration of Parity Equations.

The error allows detection since there is a difference either at input or output of monitored
element.

3.5.4 Principal Components Analysis (PCA)

Another strategy is based upon statistical modelling like PCA. The PCA technique is a linear
technique of multivariate analysis that aims to reach a linear and orthonormal special
transformation as

Wxy � (3.16)

where

! "Tnxxxxx ...321�

is a standardized input vector,

 ! "myyyyy ...321�

are the principal components and

! " mxn
mn RwwwwW %� ...131211

is the transformation matrix whose components are called principal vectors or directors (Misra
et al., 2002, Jolliffe, 2002).

The aim of this technique is to minimize the error when is approximated using itx)(� �nk &

components of this approach produces an error �
�

�
k

i
i

T
i ywXy

1

ˆ: ixxE ˆ�� . This orthonormal

transformation, W, is obtained by the eigenvectors of the correlation matrix of x(t) and the
error as a function of their eigenvalues (Moya et al., 2001).

 46

This projection matrix as in orthogonal projection is performed as shown in two dimensions
(Fig. 3.6). In here x vector is composed of two dimensions that is projected to vector y where
the difference between these two vectors is named as r vector.

2 4

2

86

8

6

4

x1

x2

x

r

y

Fig. 3.6 Orthogonal Projection of a Two-dimensional Vector

The aim of PCA is to reduce dimensions in terms of orthonormal projection from this
approximation fault isolation is pursued since classification comes as a goal. Moreover, for
fault detection in the new sample x(t), a deviation in x from the normal correlation would
change the projections onto the subspaces (Misra et al., 2002). Consequently, the magnitude of
x̂ would increase over the values obtained with normal data.

A common technique to evaluate deviations (therefore fault presence) in this sort of approach
is called the square prediction error (SPE). This is a statistic that measures the lack of fit of a
model to data. The SPE statistic indicates the residual between the projection into its
components retained in the model (Misra et al., 2002). This technique has been widely used in
combination for fault detection in chemical processes such as presented by Patton et al.,
(2000).

3.5.5 Neural Network Approach

Several approaches for classification can be pursued for fault localization like clustering based
techniques such as Fuzzy C Means, Fuzzy K means (Hoppner et al., 2001) or linear vector
Quantification. These techniques present interesting characteristics for self-diagnose one of
the most important is that related to multidimensional classification. In fact, self-organizing
maps (SOM network) fulfils this characteristic.

The purpose of Kohonen self-organizing feature maps is to capture the topology and
probability distribution of input data (Kohonen, 1989 and Hassoum, 1995) (Fig. 3.7). First a
topology of the self-organizing map is defined as a rectangular grid (Nelles, 2001) (Fig. 3.8).
Different types of grid may be used such as triangular grid, finite element grid and so on. The
selected grid presents a homogenous response suitable for noise cancellation. The
neighbourhood function with respect to a rectangular grid is defined based upon bi-
dimensional Gaussian functions such as eqn. 3.17.

 47

1 2 3 4 5

1 2 3 4 n

Input Vector, Neurons
Array

Output Vector

W11 W12

W13

W14

W1n

W5n

W54

W51

W53W52

Fig. 3.7 Topology Network

� � � �

�
�

	

�
�

�

 ���
�� 2

2
22

2
11

21 *5.0exp),(
'

iiiiiih
winwin

 (3.17)

where i1 and i2 are the index of each neuron. � is the standard deviation from each Gaussian
distribution. This distribution determines how the neurons next to the winner neuron are
modified. Each neuron has a weight vector () that represents how this is modified by an
input update.

l
ic

This bi-dimensional function allows the weight matrix to be updated in a global way rather
than just to update the weight vector related to the winner neuron. The use of
multidimensional data characterization allows early local fault localization and its propagation
as general fault presence.

Similar to other types of non-supervised neural networks such as ART2-A (Frank et al., 1998),
the input vector performs an inner product with each weight vector. Having calculated every
product, these are compared with each other in order to determine the largest value. This value
is declared as winner. The related bi-dimensional index based upon Fig. 3.8 is calculated in
order to determine how the weight matrix is modified.

Index 1
i1

Index 2
i2

(1,1) (1,2) (1,3) (1,4)

(2,4)(2,3)(2,2)

(4,1)

(2,1)

(3,1) (3,2) (3,3) (3,4)

(1,5)

(2,5)

(3,5)

(4,5)(4,4)(4,3)(4,2)

Fig. 3.8 Index Grid

The process of updating the weight matrix is based upon equation 3.18.

� �old
j

old
j

new
j cuiihcc ��� *),(* 21((3.18)

where � represents a constant value, h(i1,i2) is the Gaussian representation that permits the
modification of neighbour neurons. Finally, u represents the current input vector.

 48

A vigilance parameter named is used in order to determine the winner from comparison
between current input and every weight vector.

This whole process allows on-line classification of data based upon a defined time window by
the inherent geometry of the behaviour of the system.

The use of this technique in fault diagnosis has presented several advantages as shown by
Jämsä-Jounela et al., (2003). In this case fault diagnosis is performed using SOM in
conjunction with heuristics rules. On the other hand, Xu et al., (2002) present a novel
approach using wavelet networks and regional SOM where every sampled signal is
decomposed in order to extract several features by the use of statistical analysis, thereafter,
off-line feature clusters are performed for first time. Finally, on-line feature clusters is
performed previous signal decomposition.

Other strategies for fault detection are based upon classical neural networks techniques such as
Radial Basis Functions (RBF) and Multi-Layer Perceptron (MLP) like that presented in Fig.
3.9.

u1

un

u2

y1

ym

y2

wij
w'ij

Fig 3.9 Typical RBF Configuration

For the case of RBF this is constituted following eqn.3.19.

��
�

��
M

i
ii cufwy

0

� (3.19)

where wi is the related weight, ci the bias level and f functions are local one dimension
guassian functions (Nelles, 2001). In this case weight updating is performed by using classical
backpropagation algorithm (Werbos, 1990)

Now, for the case of multi-layer perceptron the structure of the network is defined as the
following eqn. 3.20.

 49

� �
� �

��
	

��
�

�

M

i

N

j
jiji uwfwy

1 1

' (3.20)

using the well known backpropagation algorithm as training method but considering different
layers of necessary adapting weights. In this case, there are two kind of functions one for each
layer representing the behaviour of the respective neurons. For last two networks learning
stage (based upon backpropagation) is performed off-line giving a result of supervised neural
network approach.

Having reviewed these classical neural networks strategies used for fault detection, one
important issue is the referred to how to evaluate an element through this technique. Following
Fig. (3.10) presents the most common configuration strategy bearing in mind that off-line
stage is already been performed in order to train the network.

System

Neural
Network

Selected
Patterns

u

Fig. 3.10 Classical Configuration for Neural Network using for FDI purposes

Combination of different neural networks have been pursued such as Yang et al., (2004) where
ART and SOM networks are combined by using the structure of first neural network and the
learning strategy from second neural network. From this combination, the resultant neural
network becomes suitable for unknown fault conditions. Furthermore, a review of
classification accuracy based upon the modification of similarity coefficient is pursued giving
a comparison methodology for this sort of techniques.

Similar strategies have been proposed like connecting these two neural networks as follows.
The main approach proposed is an integration of two neural networks and a bank of unknown
input observers as part of fault localization approach, which is presented in Fig. 3.1. This
process performs the monitoring procedure of case study in three main stages, sampling of
input and output data as well as, producing residuals based upon UIO bank and neural network
supervision. The sampled information is process by a non-supervised neural network in order
to be classified as pattern. The winning weight vector related to the winning pattern is
classified by second non-supervised neural network.

 50

SOM
Netwok

ART2
Network

Output Sampled Data
Vector

Current
selected
Pattern

Current
Selected
 Cluster

Unsupervised
Network

Static
Classifier

Input Sampled Data Vector

Element

Data from Analytical
 Redundancy

Approach
(Bank of Unknown
Input Observers)

Fuzzy
Evaluation

Module

Normalization
Procedure

Fig. 3.11 Pursued Topology for Intelligent Fault Localization

The idea of using two consecutive neural networks is to avoid miss-classification during the
presence of unknown scenarios. This goal pursues the use of a self-organizing map and
adaptive resonance theory algorithms. First algorithm (Self Organizing Map) categorizes the
behaviour of monitored system. The results of this categorization are evaluated by second
neural network (ART2A network) in order to avoid glitches between similar categories miss-
selected due to unknown scenarios.

The pursued strategy is based upon integration of an analytical redundancy approach and a
fault classification technique. This fault classification approach is composed of two similar
techniques in order to avoid any glitch either during transitions or during appearance of
unknown scenarios. These transitions are related to several operating points from monitored
element.

The data used is divided in three areas: input, output and residual data from analytical
redundancy. This data is used in two stages, first, off-line in order to train both neural
networks and second, on-line stage for testing this approach.

Training matrix consists of input, output and residual data and normalized between 0 and 1. In
terms of scenarios, this matrix is divided in three areas as presented in Fig. 3.12. This input
matrix is composed by three different kinds of variables, input, output and residuals. Each
variable has M samples. Finally, the whole group of variables are integrated by three
scenarios.

 51

Fig. 3.12 Input Matrix Composition

During training stage each sample time window is composed of M samples with is directly
related to a �t time window as shown in Fig. 3.13. In this case the frequency of the fault has a
bottom boundary as shown in eqn. 3.21. Where frqfault represents the frequency of the
monitored fault and �t the already mentioned sampled time window.

Time

M Samples

Inputs
Outputs

Residuals

t�
Fig. 3.13 Input matrix composed of �t time window

t
frq fault �

)
4 (3.21)

It has been chosen a quarter of �t because sampled fault information is enough to be
distinguished between different patterns. Therefore the frequency of the fault can be larger
than this quarter of �t, alternatively, the top limit in terms of fault sampling is unlimited,
although, the approach proposed in here would be useless to classify a fault much faster than
�t sampling window because at the time that current approach produces an output current fault
can be in another stage. This top bound is still open for further research and in principle is
based upon the relation between the frequency of case study and �t time window. Formal
explanation of how process monitoring is affected by sampling time window is reviewed by
Campbell et al., (2004).

During on-line stage sampling time is reduced to one sample evaluated every time as depicted
in Fig. 3.14.

 52

Time

S
am

pling D
ata

E
valuation M

odule

P
roposed R

esults

S
am

pling D
ata

E
valuation M

odule

P
roposed R

esults

Fig. 3.14 Sampling time during on-line Performance

Having explained how sampling time window plays a key role into fault monitoring a brief
description of neural networks integration is reviewed. Both neural networks are trained in
cascade as shown in Fig. 3.15.

Fig. 3.15 Integration of Both Neural Networks

Both neural networks have their own weight matrix, which are initialized at 0.11 as constant
number from each node. Three patterns are declared before training stage in each neural
network. Second stage is related to actual on-line process information by the use of the already
trained neural network.

The assumptions made on this proposal are the characteristics of the observed faults as well as
the fault-free scenarios. Furthermore, it is necessary to have access to several sources of
information from the monitored system. Formal knowledge of system behaviour during fault
scenarios is crucial for UIO design since these are defined in terms of system response during
the presence of certain unknown input. Following UIO design, input vector is conformed by
three different sectors, firstly input sampled data vector, second sector is current output by
sampled data vector and third sector is integrated with residual vector. Having conformed the
input vector, both neural networks are trained during off-line stage. During next section a
revision of each algorithm is given.

On the other hand, in order to tackle time variance classification, several solutions can be
implemented. These can be time window overlapping or an increment related to the sampled
input vector. Although, this last approach has as main disadvantage the scale in terms of the
length of input vector and over-parameterization of represented clusters. Alternatively,

 53

methodologies have been reviewed by Benitez-Perez et al. (2000) and Benitez-Perez et al.,
(1997).

Since time variant faults are the focus of this approach several strategies can be implemented
such as the already explained Self Organizing Maps (Linkens et al., 1993), however, the
computational cost tends to be expensive. Nevertheless, this algorithm can overcome this
erratic response of case study when fault scenario is presented by a more robust pattern
classification strategy based upon a global weight matrix updating procedure.

Another approach pursued in here, it is based upon two overlapped neural networks in terms
of the sampled time window. Different parameters need to be established such as the time
window size (ts*) in terms of case study frequency response and neural network parameters
(vigilance and learning values) in order to define the most suitable localization scenario. In
order to produce a Fault Localization Module (named as decision-making module DMM)
capable to cope with time variant systems, a group of Neural Networks is proposed. Fig. 3.16
shows this schematic approach.

Current Time
Window

Decision Maker
Module (DMM)

Based upon DMM
Confidence Value

is Made

Already Classified
Cluster

Fig. 3.16 Schematic Diagram of Decision Maker Module

Decision-making module (Fig. 3.16) defines the degree of effect from current pattern into
monitored system dynamics. Thereafter, Confidence Value (CV) is produced as a percentage
measure. The structure of DMM uses three ART2 networks connected as shown in Fig. 3.17.

ART2
Network

ART2
Network

ART2
Network

First Time
Window

Second Time
Window

Winning Weight
Vector

Winning Weight
Vector

Classified
Pattern

Classified
Pattern

Input Vector

Input vector

Winning
Vector

Classified
Pattern

Fig. 3.17 ART2 Networks

First two networks work with two equal size consecutive time windows overlapped by fifty
percent. Both networks are independent in terms of classified patterns. Third ART2 network
compares the winning weights vectors from both networks in order to determine the situation
of current scenario. As in a similar manner ARTMAP network performs pattern classification
(Tontini G., et al., 1996). However, it differs from ARTMAP since the construction of the map
performed by last element (map field) does not give any robust certainty for time variant

 54

behaviour due to it does not conserve past information during classification of fault and fault
free scenarios.

Fig. 3.18 presents how these time windows (ts1 first time window, ts2 second time window) are
overlapped in order to cover time variance. It is important to define the sampling period from
first and second neural networks in terms of the dynamics of case study. In fact, sampling time
from first network (ts1) is 50% overlapping of second sampled vector from second neural
network. Fig. 3.18 shows the nominal size of each time window used to classify a scenario
regardless of time behaviour of case study (Benítez-Pérez et al., 2001).

ts1 ts1 ts1 ts1 ts1 ts1 ts1 ts1

ts2 ts2 ts2 ts2 ts2 ts2 ts2

Sample data for First ART2-A Network

Sample data for Second ART2-A Network
Fig. 3.18 Time Behaviour related to Dynamic Signal Response

The maximum possible sampling time value, from dynamics case study is based upon eqn
3.22.

ts* <=
4
dt (3.22)

Where is defined as the inherent period from case study and ts* represents either ts1 or ts2. In
this case if ts* is equal to 10ms ts1 and ts2 are equal to 10ms. In order to get a good resolution
in terms of fault location, ts* should be smaller than or equal to a quarter of case study inherent
period. This result defines the top boundary of sampling time in terms of case study. For
instance, if ts* is bigger than the value shown in equation 3.22, it is not possible to guarantee
pattern recognition of a time variant case study. Although, sampling time is bounded from this
known limit, as inherent period of case study, it does not present any restriction as bottom
bound. This means that sampling period can sampled several number of case study inherent
periods.

dt

For the case of fault presence, its time response should be similar to that bounded presented
with respect to fault free scenario. This means that fault scenarios with a very fast dynamics
and classified as new scenarios are dependant on the resolution of ts* with respect to and
case study fault response in terms frequency response.

dt

 55

Having defined how sampling period from both neural networks is pursued, it is desirable to
focus on how time variant fault localization is performed. As it is known, first two neural
networks classify fairly similar behaviour due to sampling time overlapping. In fact, both
neural networks present similar learning values. Third neural network is the actual part of the
DMM, which localizes any unknown behaviour from case study. As previously mentioned,
three variables must be defined, �, � and ts*.

The novelty of this work is based upon the overlapping time windows in order to define
consistency of time variant faults. Firstly, the sampled observer event is performed as shown
in Fig. 3.19.

td/4 2td/4 7td/46td/45td/44td/43td/4 12td/411td/410td/49td/48td/4

V1
V2

V1
'

V2
'

V1
''

V2
''

ts1 ts2 ts1 ts2

ts1

ts1

ts1

ts2

ts2

ts2

Fig. 3.19 Sampling example from current approach

Where v1, v2, v1’, v2’ and so on are the sampled vectors for ART1 (v1,v1’,v1’’) and ART2
(v2,v2’,v2’’) respectively. The shade area from both vectors is the overlapped part from the
sampling procedure. Since this approximation is taken, the conformation of third weight
matrix (with respect to third ART2) is presented in Fig. 3.20.

V1

V2

V1
'

V2
'

V1
''

V2
''

W3

Common Areas

Common Areas
Common Areas

Common Areas

Fig. 3.20 Sampling example Related to Weight Matrix from Third ART2A Network

Where common areas are continuous vectors, therefore for fault free scenarios the selection of
two similar weight vectors is expected. Now, when a fault appears this approach behaves in
terms of sampling structure as a filter that it would take 1 ½ sampling cycles to declare the
presence of an abnormal behaviour even in conditions of early stages (Fig. 3.21).

 56

td/4 2td/4 7td/46td/45td/44td/43td/4 12td/411td/410td/49td/48td/4

Injected Fault
(Drift)

Starting Time of
Fault Scenario

V1
V2

V1
'

V2
'

V1
''

V2
''

ts1 ts2 ts1 ts2

ts1

ts1

ts1

ts2

ts2

ts2

Fig. 3.21 Current Sampling Approach during Fault Scenario

In this case, fault presence is first captured for ART1, then ART2 detects the presence of the
fault. Thereafter, third ART network processes the selected weight vectors where the on-line
classification is performed due to new information presence. For this case presented in Fig.
3.21, one winning vector will arise because fault is monotonically increased.

Classified patterns from third network are the representative values of current scenario either
fault or fault free with the only restriction of top bound sampling period. Third neural network,
firstly classifies the winning vector from first neural network, afterwards, it classifies second
neural network winning vector. This last classification is the representative of current scenario.
If there is a fault, this selected pattern represents the fault.

Third ART2 network has the advantage of producing a weight matrix with the most
representative patterns of certain scenario. The related winning vector is processed by a
Mamdami fuzzy logic system to generate a confidence value (CV).

The final inference machine that produces CV is presented in Table 3.2. This machine has
been built under the heuristic knowledge of the designer. The number of components is
constant; each component has been normalized between 0 and 1. The number of components
is a direct representation of the number of elements sampled by first two neural networks.

Component 1 Component 2 Component 3 Component 4 Result
High High High Low 100%
Med Med Med Low 80%
Low High High Low 50%
Low Med Med High 40%
Low Low Low High 10%

Table 3.2 Fuzzy Logic Table related to Confidence Value

 57

The universe of discourse for each component has been divided by three similar boundaries
named high, middle and low. Final result is related to the correspondent value of the already
known behaviour of the monitored system.

Different patterns have been defined with respect to a nominal value (Fig. 3.22). During on-
line performance if a new pattern appears this is declared as a 0% because it represents an
abnormal situation that it has not been defined previously giving a safe response for this new
scenario. This approach has the capability of classification of known and unknown scenarios
with just a top sampling boundary. However, fuzzy logic approach requires further work in
order to overcome an oscillated response due to current injected fault.

100%

70%

50%

20%

Confidence Value (CV)

Classified Cluster

cl
us

te
r 1

C
lu

st
er

 2

C
lu

st
er

 3

C
lu

st
er

 4

N
ew

 C
lu

st
er

0%

Fig. 3.22 Relation between Patterns and CV

3.5.6 Logic as Fault Diagnosis Strategy

Other techniques based upon logic such graphs techniques, predicate logic techniques and
fuzzy logic based techniques are suitable for fault diagnosis since can separate the behaviour
of current system by classifying real time system response through residual evaluation like
structural analysis where residuals combination give a particular fault signature as presented
by Frank et al., (2000), giving faults several characteristics depending on residual responses.
Other kind of logic is fuzzy logic where residuals again are evaluated through fuzzy system in
order to declare certain fault behaviour, classical application is shown in Fig. 3.23.

 58

Low Medium High

Component 2

Low Medium High

Component 1

Low Medium High

Component n

Fig. 3.23 Classical Fuzzy Logic Structure

Where different components play several roles like characterization of signals into
membership functions which are labeled in this particular case as Low, Medium and High. In
this case, the level of approximation is quite related to the use of these membership functions
in order to define the behaviour of the observed signals. Moreover the use of the inference
machine related to fuzzy logic gives the representation from the response of this kind of
technique.

Similar strategies like structural analysis present the advantage of fault evaluation in order to
characterize system behaviour under fault conditions a good review of this strategy is
presented in Blanke et al., (2003).

3.5.7 Heuristic Confidence Value Definition

Having defined the use of different neural networks as an approach to classify unknown
scenarios, it is important to introduce a heuristic measure as result of this evaluation. This
heuristic measure defines how a current scenario has been degraded. This measure is based
upon a fuzzy logic module that evaluates the winning weight vector related to the classified
pattern in second neural network.

The use of fuzzy logic presents the most suitable mechanism in order to evaluate those already
classified patterns. Although, information used to define fuzzy module should be rich enough
to avoid any non-desirable response. To reproduce this information into fuzzy knowledge, it is
necessary to follow the typical procedure of normalization, fuzzification, inference machine
performance and defuzzification. To incorporate further knowledge it is necessary to use off-
line learning techniques. Different techniques are available such as clustering or genetic
algorithms (Mitra, 1994).

 59

The use of Mamdami based approach (Driankov, et al., 1998) is pursued due to knowledge
representation and low computational cost. This module produces a percentage measure that
represents the response of the peripheral element with respect to current scenario (either fault
free or fault scenario), which is named as Confidence Value.

This measure classifies the behaviour of peripheral element under the presence of a fault.
Confidence Value shows the degradation of the element with respect to the output, input and
parameters. This module performs the evaluation of the selected pattern in order to produce a
percentage representation of current behaviour. As mentioned before, the procedure that fuzzy
logic acquires the knowledge it is the key issue. Different methodologies can be followed. For
instance, the use of heuristic knowledge is the must straight forward approach. Alternative
strategies such as genetic algorithms or mountain-clustering are suitable in order to define the
most accurate knowledge for specific scenarios. In here the followed approach is based upon
heuristic knowledge. Confidence value has a continuous range from zero (catastrophic
situation) to one (fault-free scenario). Its graphical representation is depicted in Fig. 3.22.

The inference machine that produces CV is presented in Table 3.2. This machine has been
built under heuristic knowledge of the designer. Ten patterns have been defined with respect
to a nominal value from input vector. During on-line performance if a new pattern appears this
is declared as a 0% because it represents an abnormal situation that it has not been defined
previously. The number of components is constant; each component has been normalized
between 0 and 1. This range has been divided by three similar boundaries named high, middle
and low using triangular membership functions overlapped by fifty percent (Fig. 3.24). Final
result is related to the correspondent value of the already known behaviour of the monitored
system.

Fig. 3.24 Fuzzy Membership relation

This module is connected in cascade mode to neural network, the input of this fuzzy
evaluation module is referred to each component of winning weight vector from current

 60

selected pattern. This means that each component of winning weight vector has an unvalued
relation to each component from the fuzzy module (Fig. 3.25).

Fig. 3.25 Relation between weight vector and fuzzy module

3.6 Conclusions

This chapter has presented an overview of several techniques for fault diagnosis in order to
enhance autonomy amongst peripheral elements like actuators and sensors. It has been shown
that unlike one particular well defined and mature strategy the combination of various issues
strength the capabilities for fault detection as shown at the combination of two neural
networks.
Performance measures are necessary to develop in order to determine weather any strategy is
feasible for fault diagnosis. One particular strategy based on structural analysis permits to
determine fault appearance through elements monitoring according to related constrains
inherent on system perform. Since this particular information is available through either
structural analysis or confidence value at last both techniques will only report those observed
faults where non-measurable faults (hidden faults) are still an open research field.

 61

